Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 23(6): 1029-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20508972

RESUMO

Iron-limited cells of the green alga Chlorella kesslerii use a reductive mechanism to acquire Fe(III) from the extracellular environment, in which a plasma membrane ferric reductase reduces Fe(III)-chelates to Fe(II), which is subsequently taken up by the cell. Previous work has demonstrated that synthetic chelators both support ferric reductase activity (when supplied as Fe(III)-chelates) and inhibit ferric reductase. In the present set of experiments we extend these observations to naturally-occurring chelators and their analogues (desferrioxamine B mesylate, schizokinen, two forms of dihydroxybenzoic acid) and also two formulations of the commonly-used herbicide N-(phoshonomethyl)glycine (glyphosate). The ferric forms of the larger siderophores (desferrioxamine B mesylate, schizokinen) and Fe(III)-N-(phoshonomethyl)glycine (as the isopropylamine salt) all supported rapid rates of ferric reductase activity, while the iron-free forms inhibited reductase activity. The smaller siderophores/siderophore precursors, 2,3- and 3,4-dihydroxybenzoic acids, did not support high rates of reductase in the ferric form but did inhibit reductase activity in the iron-free form. Bioassays indicated that Fe(III)-chelates that supported high rates of ferric reductase activity also supported a large stimulation in the growth of iron-limited cells, and that an excess of iron-free chelator decreased the growth rate. With respect to N-(phosphonomethyl)glycine, there were differences between the pure compound (free acid form) and the most common commercial formulation (which also contains isopropylamine) in terms of supporting and inhibiting ferric reductase activity and growth. Overall, these results suggest that photosynthetic organisms that use a reductive strategy for iron acquisition both require, and are potentially simultaneously inhibited by, ferric chelators. Furthermore, these results also may provide an explanation for the frequently contradictory results of N-(phosphonomethyl)glycine application to crops: we suggest that low concentrations of this molecule likely solubilize Fe(III), making it available for plant growth, but that higher (but sub-lethal) concentrations decrease iron acquisition by inhibiting ferric reductase activity.


Assuntos
Chlorella/enzimologia , FMN Redutase/antagonistas & inibidores , Quelantes de Ferro/farmacologia , Membrana Celular/efeitos dos fármacos , Chlorella/efeitos dos fármacos , Desferroxamina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ferro/administração & dosagem , Sideróforos/farmacologia , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...