Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 49-74, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657425

RESUMO

Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.


Assuntos
Ecossistema , Microbiota , Mudança Climática , Solo/química , Florestas , Nitrogênio/análise , Microbiologia do Solo , Carbono
2.
Front Chem ; 9: 613343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113600

RESUMO

Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), ß-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.

3.
Environ Sci Pollut Res Int ; 28(3): 2485-2508, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33095900

RESUMO

The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the quality of water. These results decrease in freshwater bodies near all of the areas. Besides, organic and inorganic compounds discharged from different sources into the available natural water bodies are the cause of pollution. The occurrence of heavy metals in water and volatile organic compounds (VOCs) in the air is responsible for a vast range of negative impacts on the atmosphere and human health. Nonetheless, high uses of heavy metals for human purposes may alter the biochemical and geochemical equilibrium. The major air contaminants which are released into the surroundings known as VOCs are produced through different kinds of sources, such as petrochemical and pharmaceutical industries. VOCs are known to cause various health hazards. VOCs are a pivotal group of chemicals that evaporate readily at room temperature. To get over this problem, biofiltration technology has been evolved for the treatment of heavy metals using biological entities such as plants, algae, fungi, and bacteria. Biofiltration technology is a beneficial and sustainable method for the elimination of toxic pollutants from the aquatic environment. Various types of biological technologies ranging from biotrickling filters to biofilters have been developed and they are cost-effective, simple to fabricate, and easy to perform. A significant advantage of this process is the pollutant that is transformed into biodegradable trashes which can decompose within an average time period, thus yielding no secondary pollutants. The aim of this article is to scrutinize the role of biofiltration in the removal of heavy metals in wastewater and VOCs and also to analyze the recent bioremediation technologies and methods.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Atmosfera , Biodegradação Ambiental , Humanos , Compostos Orgânicos Voláteis/análise
4.
Front Pharmacol ; 11: 608649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33776754

RESUMO

The genus Ferula is the third largest and a well-known genus of the Apiaceae family. It is categorized in the Peucedaneae tribe and Ferulinae subtribe of the Apiaceae family. At present, about 180 Ferula species have been reported. The genus is mainly distributed throughout central and South-West Asia (especially Iran and Afghanistan), the far-East, North India, and the Mediterranean. The genus Ferula is characterized by the presence of oleo-gum-resins (asafoetida, sagapenum, galbanum, and ammoniacum) and their use in natural and conventional pharmaceuticals. The main phytochemicals present in the genus Ferula are as follows: coumarin, coumarin esters, sesquiterpenes, sesquiterpene lactones, monoterpene, monoterpene coumarins, prenylated coumarins, sulfur-containing compounds, phytoestrogen, flavonoids and carbohydrates. This genus is considered to be a valuable group of medicinal plants due to its many different biological and pharmacological uses as volatile oils (essential oils). Numerous biological activities are shown by the chemical components of the essential oils obtained from different Ferula species. Because this genus includes many bioactivities such as antimicrobial, insecticidal, antioxidant, cytotoxic, etc., researchers are now focusing on this genus. Several reviews are already available on this particular genus, including information about the importance and the uses of all the phytochemicals found in the species of Ferula. Despite this, no review that specifically provides information about the biological activities of Ferula-derived essential oils, has been published yet. Therefore, the present review has been conducted to provide important information about the chemical profile, factors affecting the chemical composition, and biological activities of essential oils of the Ferula species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...