Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 328: 138487, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004825

RESUMO

Ombrotrophic peatlands are fed uniquely by atmospheric inputs and therefore have much potential as temporal archives of atmospheric microplastic (MP) deposition, yet the recovery and detection of MP within an almost purely organic matrix is challenging. This study presents a novel peat digestion protocol using sodium hypochlorite (NaClO) as a reagent for biogenic matrix removal. NaClO is more efficient than hydrogen peroxide (H2O2). By using purged air-assisted digestion, NaClO (50 vol%) reached 99% matrix digestion compared with 28% and 75% by H2O2 (30 vol%) and Fenton's reagent, respectively. At a concentration of 50 vol% NaClO did however chemically disintegrate small amounts (<10 mass %) of polyethylene terephthalate (PET) and polyamide (PA) fragments in the millimeter size range. Observation of PA6 in natural peat samples, while not found in the procedural blanks, questions whether PA is fully disintegrated by NaClO. The protocol was applied to three commercial sphagnum moss test samples, in which MP particles in the range of 0.8-65.4 µm were detected by Raman microspectroscopy. The MP mass% was determined at 0.012% corresponding to 129 thousand MP particles/g, of which 62% were smaller than 5 µm and 80% were smaller than 10 µm, yet were accountable for only 0.4% (500 ng) and 3.2% (4 µg) of the total mass of MP, respectively. These findings underline the importance of the identification of particles Ø < 5 µm when investigating atmospheric MP deposition. The MP counts were corrected for MP recovery loss and procedural blank contamination. MP spike recovery following the full protocol was estimated at 60%. The protocol offers an efficient way of isolating and pre-concentrating most aerosol sized MPs in large quantities of refractory vegetal matrices and enables the automated µRaman scanning of thousands of particles at a spatial resolution on the order of 1 µm.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nylons , Solo
2.
Nat Commun ; 12(1): 7242, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934062

RESUMO

The emerging threat of atmospheric microplastic pollution has prompted researchers to study areas previously considered beyond the reach of plastic. Investigating the range of atmospheric microplastic transport is key to understanding the global extent of this problem. While atmospheric microplastics have been discovered in the planetary boundary layer, their occurrence in the free troposphere is relatively unexplored. Confronting this is important because their presence in the free troposphere would facilitate transport over greater distances and thus the potential to reach more distal and remote parts of the planet. Here we show evidence of 0.09-0.66 microplastics particles/m3 over 4 summer months from the Pic du Midi Observatory at 2877 meters above sea level. These results exhibit true free tropospheric transport of microplastic, and high altitude microplastic particles <50 µm (aerodynamic diameter). Analysis of air/particle history modelling shows intercontinental and trans-oceanic transport of microplastics illustrating the potential for global aerosol microplastic transport.

3.
Environ Sci Process Impacts ; 22(8): 1718-1730, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32672296

RESUMO

Heavy metal pollution in fine particulate matter (PM2.5) is a serious environmental and health concern in China, particularly during winter. Here, we detected 40 elements in 24 h integrated daily PM2.5 samples collected in January 2014 from three typical Chinese metropolises (Beijing, Changchun, and Chengdu) to reflect elemental spatial variations, local sources, and regional transport. The measured elemental concentrations in Changchun were 11.1% and 48.4% higher than those in Beijing and Chengdu, respectively. Thus, PM2.5 from Changchun exhibited high levels and diversity in the elemental profile (characterized by high concentrations of industrial emission elemental markers). The results of elemental ratios and Pb isotopes proved that, except for a coal combustion source, vehicular emissions contributed more to PM2.5 heavy metals in Beijing than in the other two cities; Changchun PM2.5 elements received large contributions from industrial sources, including iron and steel manufacturing, and automobile industry. Moreover, crustal dust from long-range transport of regional air masses from the northwest regions of China played a crucial role in determining elemental levels in Beijing and Changchun, accounting for more than 50% of source intensity. However, a specific dominant source was not determined in Chengdu; the contribution of anthropogenic dust, mainly from construction activities, needs to be paid attention in Chengdu eastern area. This study contributed to enhancing our understanding of elemental spatial distribution characteristics and sources and to setting more judicious standards and strategies for PM2.5 bound heavy metals in China.


Assuntos
Poluentes Atmosféricos , Chumbo , Pequim , China , Cidades , Poeira , Monitoramento Ambiental , Isótopos , Material Particulado , Estações do Ano
4.
Global Biogeochem Cycles ; 32(4): 529-550, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29861543

RESUMO

Redox conditions and organic matter control marine methylmercury (MeHg) production. The Black Sea is the world's largest and deepest anoxic basin and is thus ideal to study Hg species along the extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1-D model, to track the fate and dynamics of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the permanently anoxic waters. Observed MeHg/Hg percentage (range 9-57%) in the anoxic waters is comparable to other subsurface maxima in oxic open-ocean waters. With the modeling we tested for various Hg methylation and demethylation scenarios along the redox gradient. The results show that Hg methylation must occur in the anoxic waters. The model was then used to simulate the time evolution (1850-2050) of Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of HgT (~31 and ~28 kmol yr-1) and MeHgT (~5 and ~4 kmol yr-1) to the basin, (2) the extent of net demethylation occurring in oxic (~1 kmol yr-1) and suboxic water (~6 kmol yr-1), (3) and the net Hg methylation in the anoxic waters of the Black Sea (~11 kmol yr-1). The model was also used to estimate the amount of anthropogenic Hg (85-93%) in the Black Sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...