Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 201(7): 2082-2093, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111632

RESUMO

Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in Drosophila S2 cells together with the presumed high-affinity receptor. This approach, which may be generally applicable to other multiprotein complexes with low-affinity components, was necessitated by the instability of IL-24 expressed by itself in either bacteria or insect cells. Although IL-24 expressed in Escherichia coli was unstable and precipitated almost immediately upon its refolding and purification, a small fraction of IL-24 remaining in the folded state was shown to be active in a cell-based assay. In the crystal structure presented here, we found that two cysteine residues in IL-24 do not form a predicted disulfide bond. Lack of structural restraint by disulfides, present in other related cytokines, is most likely reason for the low stability of IL-24. Although the contact area between IL-24 and IL-22R1 is larger than between the cytokine and IL-20R2, calculations show the latter interaction to be slightly more stable, suggesting that the shared receptor (IL-20R2) might be the higher-affinity receptor.


Assuntos
Interleucinas/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Interleucina/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Citocinas , Drosophila , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Receptores de Interleucina/genética , Transdução de Sinais
2.
Biomacromolecules ; 16(9): 2672-83, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26225909

RESUMO

There is intense interest in developing novel methods for the sustained delivery of low levels of clinical therapeutics. MAX8 is a peptide-based beta-hairpin hydrogel that has unique shear thinning properties that allow for immediate rehealing after the removal of shear forces, making MAX8 an excellent candidate for injectable drug delivery at a localized injury site. The current studies examined the feasibility of using MAX8 as a delivery system for nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), two neurotrophic growth factors currently used in experimental treatments of spinal cord injuries. Experiments determined that encapsulation of NGF and BDNF within MAX8 did not negatively impact gel formation or rehealing and that shear thinning did not result in immediate growth factor release. ELISA, microscopy, rheology, and Western blotting experiments collectively demonstrate the functional capabilities of the therapeutic-loaded hydrogels to (i) maintain a protective environment against in vitro degradation of encapsulated therapeutics for at least 28 days; and (ii) allow for sustained release of NGF and BDGF capable of initiating neurite-like extensions of PC12 cells, most likely due to NGF/BDGF signaling pathways. Importantly, while the 21 day release profiles could be tuned by adjusting the MAX8 hydrogel concentration, the initial shear thinning of the hydrogel (e.g., during injection) does not induce significant premature loss of the encapsulated therapeutic, most likely due to effective trapping of growth factors within structurally robust domains that are maintained during the application of shear forces. Together, our data suggests that MAX8 allows for greater dosage control and sustained therapeutic growth factor delivery, potentially alleviating side effects and improving the efficacy of current therapies.


Assuntos
Portadores de Fármacos , Hidrogéis , Fator de Crescimento Neural , Peptídeos , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Células PC12 , Peptídeos/química , Peptídeos/farmacologia , Ratos
3.
Biomaterials ; 37: 62-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453938

RESUMO

Hydrogels formed from self-assembling peptides are finding use in tissue engineering and drug delivery applications. Given the notorious difficulties associated with producing self-assembling peptides by recombinant expression, most are typically prepared by chemical synthesis. Herein, we report the design of a family of self-assembling ß-hairpin peptides amenable to efficient production using an optimized bacterial expression system. Expressing peptides, EX1, EX2 and EX3 contain identical eight-residue amphiphilic ß-strands connected by varying turn sequences that are responsible for ensuring chain reversal and the proper intramolecular folding and consequent self-assembly of the peptide into a hydrogel network under physiological conditions. EX1 was initially used to establish and optimize the bacterial expression system by which all the peptides could be eventually individually expressed. Expression clones were designed to allow exploration of possible fusion partners and investigate both enzymatic and chemical cleavage as means to liberate the target peptide. A systematic analysis of possible expression systems followed by fermentation optimization lead to a system in which all three peptides could be expressed as fusions with BAD-BH3, the BH3 domain of the proapoptotic BAD (Bcl-2 Associated Death) Protein. CNBr cleavage followed by purification afforded 50, 31, and 15 mg/L yields of pure EX1, EX2 and EX3, respectively. CD spectroscopy, TEM, and rheological analysis indicate that these peptides fold and assembled into well-defined fibrils that constitute hydrogels having shear-thin/recovery properties.


Assuntos
Bactérias/metabolismo , Hidrogéis/química , Peptídeos/síntese química , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Peso Molecular , Peptídeos/química , Projetos Piloto , Estrutura Secundária de Proteína , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Reologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-25266637

RESUMO

Rheological characterization of physically crosslinked peptide- and protein-based hydrogels is widely reported in the literature. In this review, we focus on solid injectable hydrogels, which are commonly referred to as 'shear-thinning and rehealing' materials. This class of what sometimes also are called 'yield-stress' materials holds exciting promise for biomedical applications that require well-defined morphological and mechanical properties after delivery to a desired site through a shearing process (e.g., syringe or catheter injection). In addition to the review of recent studies using common rheometric measurements on peptide- and protein-based, physically crosslinked hydrogels, we provide experimentally obtained visual evidence, using a rheo-confocal microscope, of the fracture and subsequent flow of physically crosslinked ß-hairpin peptide hydrogels under steady-state shear mimicking commonly conducted experimental conditions using bench-top rheometers. The observed fracture demonstrates that the supposed bulk shear-thinning and rehealing behavior of physical gels can be limited to the yielding of a hydrogel layer close to the shearing surface with the bulk of the hydrogel below experiencing negligible shear. We suggest some measures to be taken while acquiring and interpreting data using bench-top rheometers with a particular focus on physical hydrogels. In particular, the use of confocal-rheometer assembly is intended to inspire studies on yielding behavior of hydrogels perceived as shear-thinning and rehealing materials. A deeper insight into their yielding behavior will lead to the development of yield-stress, injectable, solid biomaterials, and hopefully inspire the design of new shear-thinning and rehealing hydrogels and more thorough physical characterization of such systems. Finally, more examples of bulk fracture in some physical hydrogels based on peptides and proteins are explored in the light of their behavior as yield-stress materials.


Assuntos
Hidrogéis/química , Peptídeos/química , Proteínas/química , Reologia , Calibragem , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Elastina/química , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Oscilometria , Estrutura Secundária de Proteína , Resistência ao Cisalhamento , Estresse Mecânico , Gravação em Vídeo
5.
Biomacromolecules ; 15(11): 3891-900, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25251904

RESUMO

The MAX1 ß-hairpin peptide (VKVKVKVK-V(D)PPT-KVKVKVKV-NH2) has been shown to form nanofibrils having a cross-section of two folded peptides forming a hydrophobic, valine-rich core, and the polymerized fibril exhibits primarily ß-sheet hydrogen bonding.1-7 These nanofibrils form hydrogel networks through fibril entanglements as well as fibril branching.8 Fibrillar branching in MAX1 hydrogel networks provide the ability to flow under applied shear stress and immediately reform a hydrogel solid on cessation of shear. New ß-hairpins were designed to limit branching during nanofibril growth because of steric specificity in the assembled fibril hydrophobic core. The nonturn valines of MAX1 were substituted by 2-naphthylalanine (Nal) and alanine (A) residues, with much larger and smaller side chain volumes, respectively, to obtain LNK1 (Nal)K(Nal)KAKAK-V(D)PPT-KAKAK(Nal)K(Nal)-NH2. LNK1 was targeted to self-associate with a specific "lock and key" complementary packing in the hydrophobic core in order to accommodate the Nal and Ala residue side chains. The experimentally observable manifestation of reduced fibrillar branching in the LNK1 peptide is the lack of solid hydrogel formation after shear in stark contrast to the MAX1 branched fibril system. Molecular dynamics simulations provide a molecular picture of interpeptide interactions within the assembly that is consistent with the branching propensity of MAX1 vs LNK1 and in agreement with experimental observations.


Assuntos
Engenharia Química/métodos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/química , Hidrogéis/metabolismo , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...