Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(20): eadf2535, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205750

RESUMO

Emphysema is a debilitating disease that remodels the lung leading to reduced tissue stiffness. Thus, understanding emphysema progression requires assessing lung stiffness at both the tissue and alveolar scales. Here, we introduce an approach to determine multiscale tissue stiffness and apply it to precision-cut lung slices (PCLS). First, we established a framework for measuring stiffness of thin, disk-like samples. We then designed a device to verify this concept and validated its measuring capabilities using known samples. Next, we compared healthy and emphysematous human PCLS and found that the latter was 50% softer. Through computational network modeling, we discovered that this reduced macroscopic tissue stiffness was due to both microscopic septal wall remodeling and structural deterioration. Lastly, through protein expression profiling, we identified a wide spectrum of enzymes that can drive septal wall remodeling, which, together with mechanical forces, lead to rupture and structural deterioration of the emphysematous lung parenchyma.


Assuntos
Enfisema , Pulmão , Humanos
2.
Ann Biomed Eng ; 49(2): 812-821, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32959135

RESUMO

The lungs have long been considered a desired route for drug delivery but, there is still a lack of strategies to rationally target delivery sites especially in the presence of heterogeneous airway disease. Furthermore, no standardized system has been proposed to rapidly test different ventilation strategies and how they alter the overall and regional deposition pattern in the airways. In this study, a 3D printed symmetric bifurcating tree model mimicking part of the human airway tree was developed that can be used to quantify the regional deposition patterns of different delivery methodologies. The model is constructed in a novel way that allows for repeated measurements of regional deposition using reusable parts. During ventilation, nebulized ~3-micron-sized fluid droplets were delivered into the model. Regional delivery, quantified by precision weighing individual airways, was highly reproducible. A successful strategy to control regional deposition was achieved by combining an inspiratory wave form with a "breath hold" pause after each inspiration. Specifically, the second generation of the tree was successfully targeted, and deposition was increased by up to four times in generation 2 when compared to a ventilation without the breath hold (p < 0.0001). Breath hold was also demonstrated to facilitate deposition into blocked regions of the model, which mimic airway closure during an asthma that receive no flow during inhalation. Additionally, visualization experiments demonstrated that in the absence of fluid flow, the deposition of 3-micron water droplets is dominated by gravity, which, to our knowledge, has not been confirmed under standard laboratory conditions.


Assuntos
Suspensão da Respiração , Pulmão/metabolismo , Modelos Anatômicos , Modelos Biológicos , Aerossóis , Simulação por Computador , Humanos , Tamanho da Partícula , Impressão Tridimensional
3.
Sci Rep ; 10(1): 13573, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782272

RESUMO

Particle deposition in the lung during inhalation is of interest to a wide range of biomedical sciences due to the noninvasive therapeutic route to deliver drugs to the lung and other organs via the blood stream. Before reaching the alveoli, particles must transverse the bifurcating network of airways. Computational fluid mechanical studies are often used to estimate high-fidelity flow patterns through the large conducting airways, but there is a need for reduced-dimensional modeling that enables rapid parameter optimization while accommodating the complete airway network. Here, we introduce a Markov chain model with each state corresponding to an airway segment in which a particle may be located. The local flows and transition probabilities of the Markov chain, verified against computational fluid dynamics simulations, indicate that the independent effects of three fundamental forces (gravity, fluid drag, diffusion) provide a sufficient approximation of overall particle behavior. The model enables fast computation of how different inhalation strategies, called flow policies, determine total particle escape rates and local particle deposition. In a 3-dimensional airway tree model, the optimal flow policy minimizing the risk of deposition at each generation, compared to other inlet flow waveforms, predicted significantly higher probability of escape defined as the fraction of particles exiting the tree. The model also predicts a small influence of body orientation with respect to a gravitational field on total escape probability, but a significant effect of airway narrowing on regional deposition. In summary, this model provides insight into inhalation strategies for targeted drug delivery.


Assuntos
Simulação por Computador , Hidrodinâmica , Pulmão/fisiologia , Cadeias de Markov , Modelos Biológicos , Fenômenos Biomecânicos , Gravitação , Humanos
4.
Front Physiol ; 11: 566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655401

RESUMO

RATIONALE: Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue responses to an acute exposure; however, cyclic stretching may be necessary to recapitulate physiologic, tidal breathing conditions. OBJECTIVES: To develop a multi-well stretcher and characterize the PCLS response following acute exposure to cigarette smoke extract (CSE). METHODS: A 12-well stretching device was designed, built, and calibrated. PCLS were obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1ß (IL-1ß), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate. RESULTS: The stretcher system produced nearly identical normal Lagrangian strains (E xx and E yy , p > 0.999) with negligible shear strain (E xy < 0.0005) and low intra-well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by a four-parameter logistic model (R 2 = 0.893), yielding an IC50 value of 0.018 cig/mL. Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a significant interaction between CSE and stretch pattern for IL-1ß (p = 0.017), MMP-1, TIMP1, and MT1-MMP (p < 0.001). CONCLUSION: This platform is capable of high-throughput testing of an acute exposure under tightly-regulated, cyclic stretching conditions. We conclude that the acute mechano-inflammatory response to CSE exhibits complex, stretch-dependence in the PCLS.

5.
Chest ; 155(1): 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292758

RESUMO

BACKGROUND: Distributions of low-attenuation areas in two-dimensional (2-D) CT lung slices are used to quantify parenchymal destruction in patients with COPD. However, these segmental approaches are limited and may not reflect the true three-dimensional (3-D) tissue processes that drive emphysematous changes in the lung. The goal of this study was to instead evaluate distributions of 3-D low-attenuation volumes, which we hypothesized would follow a power law distribution and provide a more complete assessment of the mechanisms underlying disease progression. METHODS: CT scans and pulmonary function test results were acquired from an observational database for N = 12 patients with COPD and N = 12 control patients. The data set included baseline and two annual follow-up evaluations in patients with COPD. Three-dimensional representations of the lungs were reconstructed from 2-D axial CT slices, with low-attenuation volumes identified as contiguous voxels < -960 Hounsfield units. RESULTS: Low-attenuation sizes generally followed a power law distribution, with the exception of large, individual outliers termed "super clusters," which deviated from the expected distribution. Super cluster volume was correlated with disease severity (% total low attenuation, ρ = 0.950) and clinical measures of lung function including FEV1 (ρ = -0.849) and diffusing capacity of the lung for carbon monoxide Dlco (ρ = -0.874). To interpret these results, we developed a personalized computational model of super cluster emergence. Simulations indicated disease progression was more likely to occur near existing emphysematous regions, giving rise to a biomechanical, force-induced mechanism of super cluster growth. CONCLUSIONS: Low-attenuation super clusters are defining, quantitative features of parenchymal destruction that dominate disease progression, particularly in advanced COPD.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada Multidetectores/métodos , Enfisema Pulmonar/diagnóstico , Idoso , Progressão da Doença , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Enfisema Pulmonar/fisiopatologia , Reprodutibilidade dos Testes , Testes de Função Respiratória
6.
Physiol Meas ; 39(7): 075002, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29877866

RESUMO

OBJECTIVE: While many studies rely on flow and pressure measurements in small animal models of respiratory disease, such measurements can however be inaccurate and difficult to obtain. Thus, the goal of this study was to design and implement an easy-to-manufacture and accurate sensor capable of monitoring flow. APPROACH: We designed and 3D printed a flowmeter and utilized parametric (resistance and inertance) and nonparametric (polynomial and Volterra series) system identification to characterize the device. The sensor was tested in a closed system for apparent flow using the common mode rejection ratio (CMRR). The sensor properly measured tidal volumes and respiratory rates in spontaneously breathing mice. The device was used to evaluate a ventilator's ability to deliver a prescribed volume before and after lung injury. MAIN RESULTS: The parametric and polynomial models provided a reasonable prediction of the independently measured flow (Adjusted coefficient of determination [Formula: see text] = 0.9591 and 0.9147 respectively), but the Volterra series of the 1st, 2nd, and 3rd order with a memory of six time points provided better fits ([Formula: see text] = 0.9775, 0.9787, and 0.9954, respectively). At and below the mouse breathing frequency (1-5 Hz), CMRR was higher than 40 dB. Following lung injury, the sensor revealed a significant drop in delivered tidal volume. SIGNIFICANCE: We demonstrate that the application of nonparametric nonlinear Volterra series modeling in combination with 3D printing technology allows the inexpensive and rapid fabrication of an accurate flow sensor for continuously measuring small flows in various physiological conditions.


Assuntos
Dinâmica não Linear , Testes de Função Respiratória/instrumentação , Ar , Animais , Fenômenos Biomecânicos , Desenho de Equipamento , Camundongos , Pressão , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...