Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 870, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020032

RESUMO

The adhesion of cells to the extracellular matrix engages cell surface receptors such as integrins, proteoglycans and other types of cell adhesion molecules such as CD44. To closely examine the determinants of cell adhesion, herein we describe the generation of high-density peptide arrays and test the growth of cells on these multifunctionalized surfaces. The peptide library used consists of over 11,000 different sequences, either random or derived from existing proteins. By applying this screen to SW620 mCherry colorectal cancer cells, we select for peptides with both maximum cell adhesion and maximum cell repulsion. All of these extreme properties are based on unique combinations of amino acids. Here, we identify peptides with maximum cell repulsion on secreted frizzled- and Dickkopf-related proteins. Peptides with strong cell repulsion are found at the poles of the TNF-alpha homotrimer. The formation of cellular patterns on alternating highly repulsive and adhesive peptides are examined. Our screen allows the identification of peptides suitable for biomedical and tissue engineering applications.


Assuntos
Adesão Celular , Ensaios de Triagem em Larga Escala , Biblioteca de Peptídeos , Peptídeos , Humanos , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/metabolismo , Propriedades de Superfície
2.
Sci Rep ; 13(1): 5107, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991084

RESUMO

Cancer is a devastating disease and the second leading cause of death worldwide. However, the development of resistance to current therapies is making cancer treatment more difficult. Combining the multi-omics data of individual tumors with information on their in-vitro Drug Sensitivity and Resistance Test (DSRT) can help to determine the appropriate therapy for each patient. Miniaturized high-throughput technologies, such as the droplet microarray, enable personalized oncology. We are developing a platform that incorporates DSRT profiling workflows from minute amounts of cellular material and reagents. Experimental results often rely on image-based readout techniques, where images are often constructed in grid-like structures with heterogeneous image processing targets. However, manual image analysis is time-consuming, not reproducible, and impossible for high-throughput experiments due to the amount of data generated. Therefore, automated image processing solutions are an essential component of a screening platform for personalized oncology. We present our comprehensive concept that considers assisted image annotation, algorithms for image processing of grid-like high-throughput experiments, and enhanced learning processes. In addition, the concept includes the deployment of processing pipelines. Details of the computation and implementation are presented. In particular, we outline solutions for linking automated image processing for personalized oncology with high-performance computing. Finally, we demonstrate the advantages of our proposal, using image data from heterogeneous practical experiments and challenges.


Assuntos
Algoritmos , Neoplasias , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sistemas Computacionais , Aprendizagem
3.
Cell Death Dis ; 13(2): 168, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190527

RESUMO

Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration. Excision of Cd44 in Cd44fl/fl;VillinCreERT2 mice reduced Wnt target gene expression in intestinal crypts and affected stem cell functionality in organoids. Although the integrity of the intestinal epithelium was conserved in mice lacking CD44, they were hypersensitive to dextran sulfate sodium, and showed more severe inflammation and delayed regeneration. We localized the molecular function of CD44 at the Wnt signalosome, and identified novel DVL/CD44 and AXIN/CD44 complexes. CD44 thus promotes optimal Wnt signaling during intestinal regeneration.


Assuntos
Intestinos , Via de Sinalização Wnt , Animais , Proliferação de Células/fisiologia , Retroalimentação , Mucosa Intestinal/metabolismo , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...