Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875300

RESUMO

Chlorpyrifos is an organophosphate pesticide associated with numerous health effects including motor performance decrements. While many studies have focused on the health effects following acute chlorpyrifos poisonings, almost no studies have examined the effects on motoneurons following occupational-like exposures. The main objective of this study was to examine the broad effects of repeated occupational-like chlorpyrifos exposures on spinal motoneuron soma size relative to motor activity. To execute our objective, adult rats were exposed to chlorpyrifos via oral gavage once a day, five days a week for two weeks. Chlorpyrifos exposure effects were assessed either three days or two months following the last exposure. Three days following the last repeated chlorpyrifos exposure, there were transient effects in open-field motor activity and plasma cholinesterase activity levels. Two months following the chlorpyrifos exposures, there were delayed effects in sensorimotor gating, pro-inflammatory cytokines and spinal lumbar motoneuron soma morphology. Overall, these results offer support that subacute repeated occupational-like chlorpyrifos exposures have both short-term and longer-term effects in motor activity, inflammation, and central nervous system mechanisms.


Assuntos
Clorpirifos , Atividade Motora , Neurônios Motores , Animais , Clorpirifos/toxicidade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Ratos , Masculino , Atividade Motora/efeitos dos fármacos , Inseticidas/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ratos Sprague-Dawley , Região Lombossacral , Colinesterases/metabolismo , Colinesterases/sangue , Inibidores da Colinesterase/toxicidade
2.
Front Neurosci ; 16: 1069484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620466

RESUMO

Transcranial direct current stimulation (tDCS) has shown therapeutic potential to mitigate symptoms of various neurological disorders. Studies from our group and others used rodent models to demonstrate that tDCS modulates synaptic plasticity. We previously showed that 30 min of 0.25 mA tDCS administered to rats induced significant enhancement in the synaptic plasticity of hippocampal neurons. It has also been shown that tDCS induces expression of proteins known to mediate synaptic plasticity. This increase in synaptic plasticity may underly the observed therapeutic benefits of tDCS. However, the anti-inflammatory benefits of tDCS have not been thoroughly elucidated. Here we report that three sessions of tDCS spaced 1-3 weeks apart can significantly reduce levels of several inflammatory cytokines in brains of healthy rats. Rats receiving tDCS experienced enhanced synaptic plasticity without detectable improvement in behavioral tests or significant changes in astrocyte activation. The tDCS-mediated reduction in inflammatory cytokine levels supports the potential use of tDCS as a countermeasure against inflammation and offers additional support for the hypothesis that cytokines contribute to the modulation of synaptic plasticity.

3.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31311802

RESUMO

We investigated the calcium dynamics of dorsal root ganglion (DRG) neurons using transgenic mice to target expression of the genetically encoded calcium indicator (GECI), GCaMP6s, to a subset of neurons containing parvalbumin (PV), a calcium-binding protein present in proprioceptors and low-threshold mechanoreceptors. This study provides the first analysis of GECI calcium transient parameters from large-diameter DRG neurons. Our approach generated calcium transients of consistent shape and time-course, with quantifiable characteristics. Four parameters of calcium transients were determined to vary independently from each other and thus are likely influenced by different calcium-regulating mechanisms: peak amplitude, rise time (RT), decay time, and recovery time. Pooled analysis of 188 neurons demonstrated unimodal distributions, providing evidence that PV+ DRG neurons regulate calcium similarly as a population despite their differences in size, electrical properties, and functional sensitivities. Calcium transients increased in size with elevated extracellular calcium, longer trains of action potentials, and higher stimulation frequencies. RT and decay time increased with the addition of the selective sarco/endoplasmic reticulum calcium ATPases (SERCA) blocker, thapsigargin (TG), while peak amplitude and recovery time remained the same. When elevating bath pH to 8.8 to block plasma-membrane calcium ATPases (PMCA), all measured parameters significantly increased. These results illustrate that GECI calcium transients provide sufficient resolution to detect changes in electrical activity and intracellular calcium concentration, as well as discern information about the activity of specific subclasses of calcium regulatory mechanisms.


Assuntos
Sinalização do Cálcio/fisiologia , Gânglios Espinais/fisiologia , Neurônios/fisiologia , Parvalbuminas/fisiologia , Animais , Cálcio/análise , Feminino , Masculino , Camundongos Transgênicos , Imagem Óptica/métodos
4.
J Mol Cell Cardiol ; 132: 13-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071333

RESUMO

Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/fisiologia , Potássio/metabolismo , Animais , Cardiomiopatia Dilatada/metabolismo , Eletrofisiologia , Glicosilação , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
5.
PLoS One ; 12(1): e0170751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122055

RESUMO

Muscle proprioceptive afferents provide feedback critical for successful execution of motor tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents. The morphology of these proprioceptors and their associated afferents has been studied extensively in the cat soleus, and to a lesser degree, in the rat; however, quantitative analyses of proprioceptive innervation in the mouse soleus are comparatively limited. The present study employed genetically-encoded fluorescent reporting systems to label and analyze muscle spindles, Golgi tendon organs, and the proprioceptive sensory neuron subpopulations supplying them within the intact mouse soleus muscle using high magnification confocal microscopy. Total proprioceptive receptors numbered 11.3 ± 0.4 and 5.2 ± 0.2 for muscle spindles and Golgi tendon organs, respectively, and these receptor counts varied independently (n = 27 muscles). Analogous to findings in the rat, muscle spindles analyzed were most frequently supplied by two proprioceptive afferents, and in the majority of instances, both were classified as primary endings using established morphological criteria. Secondary endings were most frequently observed when spindle associated afferents totaled three or more. The mean diameter of primary and secondary afferent axons differed significantly, but the distributions overlap more than previously observed in cat and rat studies.


Assuntos
Contração Muscular/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/inervação , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Mecanorreceptores/fisiologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...