Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 9: 1113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349480

RESUMO

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains the most common life-shortening diseases affecting the exocrine organs. The absence of this channel results in an imbalance of ion concentrations across the cell membrane and results in more abnormal secretion and mucus plugging in the gastrointestinal tract and in the lungs of CF patients. The direct introduction of fully functional CFTR by gene therapy has long been pursued as a therapeutical option to restore CFTR function independent of the specific CFTR mutation, but the different clinical trials failed to propose persuasive evidence of this strategy. The last ten years has led to the development of new pharmacotherapies which can activate CFTR function in a mutation-specific manner. Although approximately 2,000 different disease-associated mutations have been identified, a single codon deletion, F508del, is by far the most common and is present on at least one allele in approximately 70% of the patients in CF populations. This strategy is limited by chemistry, the knowledge on CFTR and the heterogenicity of the patients. New research efforts in CF aim to develop other therapeutical approaches to combine different strategies. Targeting RNA appears as a new and an important opportunity to modulate dysregulated biological processes. Abnormal miRNA activity has been linked to numerous diseases, and over the last decade, the critical role of miRNA in regulating biological processes has fostered interest in how miRNA binds to and interacts explicitly with the target protein. Herein, this review describes the different strategies to identify dysregulated miRNA opens up a new concept and new opportunities to correct CFTR deficiency. This review describes therapeutic applications of antisense techniques currently under investigation in CF.

2.
Med Sci (Paris) ; 34(6-7): 554-562, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30067205

RESUMO

Cystic fibrosis is the most common lethal genetic disease in the Caucasian population, characterized by CFTR gene mutations, which is a chloride channel. Whereas this gene has been known since 1989, the curative therapeutic solutions proposed to patients remain limited. New therapeutic strategies are therefore being explored, such as those targeting miRNA participating in the regulation of target mRNA expression. This review focuses on the involvement of miRNA in cystic fibrosis including ion channel control, inflammation, infection and bronchial obstruction and their therapeutic potential.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , MicroRNAs/fisiologia , Terapia de Alvo Molecular/tendências , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular/métodos , Mutação
3.
J Pathol ; 245(4): 410-420, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29732561

RESUMO

Cystic fibrosis (CF) is the most common lethal genetic disease, caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. CF is characterized by an ionic imbalance and thickened mucus, which impair mucociliary clearance and promote bacterial colonization and the establishment of infection/inflammation cycles. However, the origin of this inflammation remains unclear, although microRNAs (miRNAs) are suspected to be involved. MiRNAs are small non-coding RNAs that bind to the 3'-untranslated regions (UTRs) of target gene mRNA, thereby repressing their translation and/or inducing their degradation. The goal of this study was to investigate the role of microRNAs associated with pulmonary inflammation in CF patients. Through the analysis of all miRNAs (miRNome) in human primary air-liquid interface cultures, we demonstrated that miR-199a-3p is the only miRNA downregulated in CF patients compared to controls. Moreover, through RNA sequencing (transcriptome) analysis, we showed that 50% of all deregulated mRNAs are linked directly or indirectly to the NF-κB pathway. To identify a specific target, we used bioinformatics analysis to predict whether miR-199a-3p targets the 3'-UTR of IKBKB, which encodes IKKß, a major protein in the NF-κB pathway. Subsequently, we used bronchial explants from CF patients to show that miR-199a-3p expression is downregulated compared to controls and inversely correlated with increases in expression of IKKß and IL-8. Through functional studies, we showed that miR-199a-3p modulates the expression of IKBKB through a direct interaction at its 3'-UTR in bronchial epithelial cells from CF patients. In miR-199a-3p overexpression experiments, we demonstrated that for CF cells, miR-199a-3p reduced IKKß protein expression, NF-κB activity, and IL-8 secretion. Taken together, our findings show that miR-199a-3p plays a negative regulatory role in the NF-κB signalling pathway and that its low expression in CF patients contributes to chronic pulmonary inflammation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fibrose Cística/genética , Perfilação da Expressão Gênica/métodos , Pulmão/metabolismo , MicroRNAs/genética , Pneumonia/genética , Análise de Sequência de RNA/métodos , Regiões 3' não Traduzidas , Sítios de Ligação , Estudos de Casos e Controles , Células Cultivadas , Fibrose Cística/metabolismo , Regulação para Baixo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pneumonia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos
4.
Nat Commun ; 8(1): 710, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955034

RESUMO

Cystic fibrosis results from reduced cystic fibrosis transmembrane conductance regulator protein activity leading to defective epithelial ion transport. Ca2+-activated Cl- channels mediate physiological functions independently of cystic fibrosis transmembrane conductance regulator. Anoctamin 1 (ANO1/TMEM16A) was identified as the major Ca2+-activated Cl- channel in airway epithelial cells, and we recently demonstrated that downregulation of the anoctamin 1 channel in cystic fibrosis patients contributes to disease severity via an unknown mechanism. Here we show that microRNA-9 (miR-9) contributes to cystic fibrosis and downregulates anoctamin 1 by directly targeting its 3'UTR. We present a potential therapy based on blockage of miR-9 binding to the 3'UTR by using a microRNA target site blocker to increase anoctamin 1 activity and thus compensate for the cystic fibrosis transmembrane conductance regulator deficiency. The target site blocker is tested in in vitro and in mouse models of cystic fibrosis, and could be considered as an alternative strategy to treat cystic fibrosis.Downregulation of the anoctamin 1 calcium channel in airway epithelial cells contributes to pathology in cystic fibrosis. Here the authors show that microRNA-9 targets anoctamin 1 and that inhibiting this interaction improves mucus dynamics in mouse models.

5.
Am J Pathol ; 185(4): 897-908, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687559

RESUMO

The molecular basis of cystic fibrosis (CF) is a mutation-related defect in the epithelial-cell chloride channel called CF transmembrane conductance regulator (CFTR). This defect alters chloride ion transport and impairs water transport across the cell membrane. Marked clinical heterogeneity occurs even among patients carrying the same mutation in the CFTR gene. Recent studies suggest that such heterogeneity could be related to epigenetic factors and/or miRNAs, which are small noncoding RNAs that modulate the expression of various proteins via post-transcriptional inhibition of gene expression. In the respiratory system, it has been shown that the dysregulation of miRNAs could participate in and lead to pathogenicity in several diseases. In CF airways, recent studies have proposed that miRNAs may modulate disease progression by affecting the production of either CFTR or various proteins that are dysregulated in the CF lung. Herein, we provide an overview of studies showing how miRNAs may modulate CF pathology and the efforts to develop miRNA-based treatments and/or to consider miRNAs as biomarkers. The identification of miRNAs involved in CF disease progression opens up new avenues toward treatments targeting selected clinical components of CF, independently from the CFTR mutation.


Assuntos
Fibrose Cística/genética , MicroRNAs/genética , Animais , Biomarcadores/metabolismo , Biologia Computacional , Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...