Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33352260

RESUMO

Hydropower plants (HPPs) are a source of "green" energy but also a threat to migrating fish such as the European eel (Anguilla anguilla) owing to the disruption of river connectivity and the obstruction of downstream migration. The impact of HPP are well-documented in terms of fish survival and damages but there is no available information concerning the condition of surviving and unharmed fish. The aim of this study is to assess the impact of the passage through HPP on the survival, the physiological and health status of adult eels. Two trials were carried with variants of the Kaplan turbine - one of the most common types in Europe. After a deliberate passage through the turbines, we studied direct mortality, external and internal damages, stress and immune biomarkers such as plasma cortisol and glucose levels, alternative complement (ACH50), lysozyme and peroxidase activities, and total immunoglobulin (Ig) content. Our results showed a lower survival and a higher external and internal damages rates in the HPP groups. Glucose levels, ACH50, lysozyme and peroxidase activities and TIgc were also affected by the passage depending on HPP characteristics. Those findings suggest a greater energy expenditure and a disruption in innate immunity due to this passage. HPPs can not only have an impact in terms of direct mortality and injuries but also affect the physiological and health condition of the surviving eels. This impact may explain the delayed mortality observed in telemetric studies and the passage through many HPPs may compromise the ability of adult eels to migrate successfully to the ocean.


Assuntos
Anguilla/fisiologia , Migração Animal , Espécies em Perigo de Extinção , Centrais Elétricas , Animais , Glicemia/análise , Meio Ambiente , Hidrocortisona/sangue , Imunidade Humoral , Imunoglobulinas/sangue , Muramidase , Oceanos e Mares , Rios , Estresse Fisiológico
2.
Artigo em Inglês | MEDLINE | ID: mdl-32535234

RESUMO

Atlantic salmon is an anadromous species migrating from upper-reach nursery areas in rivers to the oceanic feeding areas at smolt stage and inversely at adult stage requiring unimpeded migration routes. However, dams associated with hydroelectric power plants (HPP) disrupt river connectivity and affect fish movement and survival. The objective of the current study was to evaluate the short and mid-term physiological and immune response of Atlantic salmon smolts after passing through Andenne HPP (Meuse River, Belgium). Several parameters were studied after an in situ deliberate passage including direct mortality and external damages, stress and immune biomarkers as plasma cortisol and glucose levels, complement and peroxidase activities, and immune and oxidative stress related gene expression 24 h, 72 h and 120 h after passage. Survival rate was lower and external damages were more important in fish that confronted the HPP compared to the control ones. Moreover, the passage through the turbine affected plasma glucose levels, complement and peroxidase activities and the expression of some immune genes such as lysg, igm and mpo in a timely manner suggesting that this passage can lead to a great energy expenditure and a disruption of innate immunity. Our observations can partially explain the delayed mortality observed in many studies leading to a poor success of restocking programs. HPPs not only have a direct impact in terms of mortalities and injuries but also an indirect one in terms of physiological and immune changes that can compromise Atlantic salmon smolts ability to escape successfully to the ocean.


Assuntos
Adaptação Biológica/fisiologia , Migração Animal/fisiologia , Centrais Elétricas , Salmo salar/fisiologia , Animais , Bélgica , Oceanos e Mares , Rios
3.
PLoS One ; 8(5): e63696, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691087

RESUMO

Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.


Assuntos
Comportamento Animal/fisiologia , Reação de Fuga/fisiologia , Salmo salar/fisiologia , Comportamento Social , Estimulação Acústica , Análise de Variância , Animais , Luz , Estimulação Luminosa , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...