Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 12(1): 94-99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662847

RESUMO

AIM: To investigate and compare the efficacy of two machine-learning technologies with deep-learning (DL) and support vector machine (SVM) for the detection of branch retinal vein occlusion (BRVO) using ultrawide-field fundus images. METHODS: This study included 237 images from 236 patients with BRVO with a mean±standard deviation of age 66.3±10.6y and 229 images from 176 non-BRVO healthy subjects with a mean age of 64.9±9.4y. Training was conducted using a deep convolutional neural network using ultrawide-field fundus images to construct the DL model. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and area under the curve (AUC) were calculated to compare the diagnostic abilities of the DL and SVM models. RESULTS: For the DL model, the sensitivity, specificity, PPV, NPV and AUC for diagnosing BRVO was 94.0% (95%CI: 93.8%-98.8%), 97.0% (95%CI: 89.7%-96.4%), 96.5% (95%CI: 94.3%-98.7%), 93.2% (95%CI: 90.5%-96.0%) and 0.976 (95%CI: 0.960-0.993), respectively. In contrast, for the SVM model, these values were 80.5% (95%CI: 77.8%-87.9%), 84.3% (95%CI: 75.8%-86.1%), 83.5% (95%CI: 78.4%-88.6%), 75.2% (95%CI: 72.1%-78.3%) and 0.857 (95%CI: 0.811-0.903), respectively. The DL model outperformed the SVM model in all the aforementioned parameters (P<0.001). CONCLUSION: These results indicate that the combination of the DL model and ultrawide-field fundus ophthalmoscopy may distinguish between healthy and BRVO eyes with a high level of accuracy. The proposed combination may be used for automatically diagnosing BRVO in patients residing in remote areas lacking access to an ophthalmic medical center.

2.
Int Ophthalmol ; 39(8): 1871-1877, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30218173

RESUMO

PURPOSE: In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). METHODS: In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. RESULTS: The DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988). CONCLUSION: DL model is better than SVM model in detecting ERM by using 3D-OCT images.


Assuntos
Membrana Epirretiniana/diagnóstico , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Retina/diagnóstico por imagem , Máquina de Vetores de Suporte , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Idoso , Aprendizado Profundo , Diagnóstico Precoce , Feminino , Humanos , Masculino
3.
J Ophthalmol ; 2018: 1875431, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515316

RESUMO

The aim of this study is to assess the performance of two machine-learning technologies, namely, deep learning (DL) and support vector machine (SVM) algorithms, for detecting central retinal vein occlusion (CRVO) in ultrawide-field fundus images. Images from 125 CRVO patients (n=125 images) and 202 non-CRVO normal subjects (n=238 images) were included in this study. Training to construct the DL model using deep convolutional neural network algorithms was provided using ultrawide-field fundus images. The SVM uses scikit-learn library with a radial basis function kernel. The diagnostic abilities of DL and the SVM were compared by assessing their sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic curve for CRVO. For diagnosing CRVO, the DL model had a sensitivity of 98.4% (95% confidence interval (CI), 94.3-99.8%) and a specificity of 97.9% (95% CI, 94.6-99.1%) with an AUC of 0.989 (95% CI, 0.980-0.999). In contrast, the SVM model had a sensitivity of 84.0% (95% CI, 76.3-89.3%) and a specificity of 87.5% (95% CI, 82.7-91.1%) with an AUC of 0.895 (95% CI, 0.859-0.931). Thus, the DL model outperformed the SVM model in all indices assessed (P < 0.001 for all). Our data suggest that a DL model derived using ultrawide-field fundus images could distinguish between normal and CRVO images with a high level of accuracy and that automatic CRVO detection in ultrawide-field fundus ophthalmoscopy is possible. This proposed DL-based model can also be used in ultrawide-field fundus ophthalmoscopy to accurately diagnose CRVO and improve medical care in remote locations where it is difficult for patients to attend an ophthalmic medical center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...