Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplant Proc ; 52(10): 2970-2976, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32763007

RESUMO

Ischemic renal failure is an inflammatory disease that can affect various organs, including the heart. The organ responds to the stimulus and undergoes tissue remodeling that can result in cardiac hypertrophy. This study aimed to characterize the cardiac global gene expression profile in renal ischemia/reperfusion (IR) model using microarray technology. To do that, left kidney ischemia was induced in male C57BL/6 mice for 60 minutes, followed by reperfusion (IR) for 5, 8, 15, or 20 days post ischemia (dpi). Total cardiac tissue RNA was extracted and hybridized to chips with 35,000 mouse genes. The GeneChip Mouse Genome 430 2.0 Array Expression chip (Affymetrix) was used, and CEL files generated were processed with DNA-Chip-Analyzer (dCHIP) software. Subsequent analysis considered only differences among groups of at least 1.2-fold (up or down) expression changes. Analyses of the samples indicated positive modulation of 17,413 genes and 405 pathways and negative modulation of 18,287 genes and 300 pathways. A narrower analysis of genes related to inflammation, metabolism, apoptosis, oxidative stress, and channels/ion transport was performance, and it was correlated with IR injury, corroborating previous data from literature. Renal IR induced a global shift in cardiac tissue gene expression; in particular, genes related to the inflammatory system and cardiomyocyte function were changed. The in-depth study of the cell signaling in the present study could stimulate the development of new therapeutic option to ameliorate the outcome of renal-IR-induced heart damage.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/genética , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transcriptoma
2.
J Biomed Opt ; 19(3): 35006, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24658775

RESUMO

The objectives of this study were to evaluate the effect of low-level laser irradiation (LLLI) on bovine oocyte and granulosa cells metabolism during in vitro maturation (IVM) and further embryo development. Cumulus-oocytes complexes (COCs) were subjected (experimental group) or not (control group) to irradiation with LLLI in a 633-nm wavelength and 1 J/cm2 fluency. The COCs were evaluated after 30 min, 8, 16, and 24 h of IVM. Cumulus cells were evaluated for cell cycle status, mitochondrial activity, and viability (flow cytometry). Oocytes were assessed for meiotic progression status (nuclear staining), cell cycle genes content [real-time polymerase chain reaction (PCR)], and signal transduction status (western blot). The COCs were also in vitro fertilized, and the cleavage and blastocyst rates were assessed. Comparisons among groups were statistically performed with 5% significance level. For cumulus cells, a significant increase in mitochondrial membrane potential and the number of cells progressing through the cycle could be observed. Significant increases on cyclin B and cyclin-dependent kinase (CDK4) levels were also observed. Concerning the oocytes, a significantly higher amount of total mitogen-activated protein kinase was found after 8 h of irradiation, followed by a decrease in all cell cycle genes transcripts, exception made for the CDK4. However, no differences were observed in meiotic progression or embryo production. In conclusion, LLLI is an efficient tool to modulate the granulosa cells and oocyte metabolism.


Assuntos
Células da Granulosa/efeitos da radiação , Lasers , Oócitos/efeitos da radiação , Animais , Bovinos , Embrião de Mamíferos/efeitos da radiação , Feminino , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Meiose/efeitos da radiação , Oócitos/metabolismo , Oócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...