Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 108(6): 1203-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821625

RESUMO

BACKGROUND AND AIMS: The productivity and stability of grazed grassland rely on dynamic interactions between the sward and the animal. The descriptions of the sward canopies by standard 2-D representations in studies of animal-sward interactions at the bite scale need to be improved to account for the effect of local canopy heterogeneity on bite size and regrowth ability. The aim of this study was to assess a methodology of 3-D digitized canopies in order to understand the balance between bite mass and light interception by the residual sward. METHODS: 3-D canopy structures of four white clover swards were recorded using a POLHEMUS electromagnetic digitizer and adapted software (POL95). Plant components were removed after digitizing to determine aerial dry matter. Virtual canopies were synthesized and then used to derive canopy geometrical parameters, to compute directional interception and to calculate bite mass. The bit masses of cattle and sheep were simulated according to their form, depth and placement on the patch, taking account of explicit sward architecture. The resulting light interception efficiency (LIE) of each organ was then calculated using a projective method applied to the virtual residual sward. This process enabled an evaluation of light interception based on Beer's law at the bite scale. KEY RESULTS: The patterns of the vertical profiles of LAI appeared as bimodal, triangular or skewed parabolic functions. For a single bite of similar area and depth, the lowest mass was observed with half-spherical form and the highest for the cylindrical form, whatever the initial sward structure. The differences between the actual LIE and that calculated by Beer's law were marked for residual swards shorter than 8 cm. Bite mass and LIE values after grazing were more strongly affected by the initial structure of the sward than by bite form and placement. CONCLUSIONS: 3-D digitizing techniques enabled a definition of the geometry of each component in sward canopies and an accurate description of their vertical and horizontal heterogeneities. The discrepancy between Beer's law results and actual light interception was reduced when the sward regrew rapidly and if the rest period was long. Studies on the biting process would greatly benefit from this method as a framework to formulate and test hypotheses in a quantitative manner.


Assuntos
Simulação por Computador , Herbivoria , Imageamento Tridimensional/métodos , Luz , Trifolium/crescimento & desenvolvimento , Altitude , Ração Animal , Animais , Bovinos , Imageamento Tridimensional/instrumentação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Ovinos , Trifolium/fisiologia
2.
Funct Plant Biol ; 35(10): 1059-1069, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688854

RESUMO

We developed a double-digitising method combining a hand-held electromagnetic digitizer and a non-contact 3D laser scanner. The former was used to record the positions of all leaves in a tree and the orientation angles of their lamina. The latter served to obtain the morphology of the leaves sampled in the tree. As the scanner outputs a cloud of points, software was developed to reconstruct non-planar (NP) leaves composed of triangles, and to compute numerical shape parameters: midrib curvature, torsion and transversal curvature of the lamina. The combination of both methods allowed construction of 3D virtual trees with NP leaves. The method was applied to young beech trees (Fagus sylvatica L.) from different sunlight environments (from 1 to 100% incident light) in a forest in central France. Leaf morphology responded to light availability, with a more bent shape in well-lit leaves. Light interception at the leaf scale by NP leaves decreased from 4 to 10% for shaded and sunlit leaves compared with planar leaves. At the tree scale, light interception by trees made of NP leaves decreased by 1 to 3% for 100% to 1% light, respectively.

3.
Tree Physiol ; 26(3): 337-51, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16356905

RESUMO

A simplified method for building three-dimensional (3D) mock-ups of peach trees is presented. The method combines partial digitizing of tree structure with reconstruction rules for non-digitized organs. Reconstruction was applied at two scales: leaves on current-year shoots (CYS) and shoots on 1-year-old shoots (OYOS). Reconstruction rules make use of allometric relationships, random sampling of shoot attribute distribution and additional hypotheses (e.g., constant internode length). The method was quantitatively assessed for two training systems (tight goblet and wide-double-Y), at a range of spatial scales. For this purpose, light interception properties of reference and reconstructed mock-ups were compared. Mock-up quality depended on scale. Foliage reconstruction on CYS was unsuitable for generating a given CYS. Similarly, CYS reconstruction on OYOS was unsuitable for generating a given OYOS. This is because generic rules derived at the population scale do not consider specific foliage or shoot attributes of a given CYS or OYOS. In contrast, foliage reconstruction on CYS was able to generate OYOS mock-ups having light properties similar to the reference mock-ups. The same held for CYS reconstruction on OYOS for light capture properties at the tree scale. The CYS reconstruction on OYOS was also suitable for deriving OYOS distribution as a function of light interception ability. Reconstruction rules were successfully used to build the vegetation neighborhood of a reference shoot. The proposed method could therefore be used to make 3D tree mock-ups usable for a range of some, but not all, light computations. Because the simplified method allows large time savings, it could be used in virtual experiments requiring large numbers of replicates, such as comparative studies of tree genotypes or training systems.


Assuntos
Processamento de Imagem Assistida por Computador , Prunus/anatomia & histologia , Prunus/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...