Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 504: 81-90, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33587980

RESUMO

Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance. Depletion of endogenous LCK or treatment of cells with LCK inhibitor induced tumor-specific cell death and synergized cisplatin sensitivity in EBV-positive C666-1 and EBV-negative SUNE1 cells. Further analyses demonstrated that LCK is regulating the proliferation and cisplatin resistance through activation of signal transducer and activator of transcription 5 (STAT5). Taken together, our study provides a molecular basis for targeting LCK and STAT5 signaling as potential druggable targets for the management of NPC.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linfócitos/enzimologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas Tirosina Quinases/genética , Interferência de RNA , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/enzimologia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/enzimologia , Neoplasias Nasofaríngeas/patologia
2.
Electrophoresis ; 40(20): 2728-2735, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219180

RESUMO

This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/fisiologia , Forma Celular/fisiologia , Eletroforese/instrumentação , Linhagem Celular Tumoral , Eletroforese/métodos , Feminino , Humanos , Microeletrodos
3.
BMC Res Notes ; 4: 551, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22185663

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy, which commonly occurs in Southern China, Taiwan, North Africa and Southeast Asia. Nasopharyngeal carcinoma is strongly associated with Epstein-Barr virus infection. The p53 tumour suppressor protein is rarely mutated in NPC suggesting that the inactivation of p53 pathway in NPC could be due to the presence of EBV proteins. The aim of this work was to determine the effects of EBV proteins namely LMP1 and LMP2A on the expression levels of p53 protein. FINDINGS: In this work we found that LMP1, but not LMP2A, decreased p53 protein levels. Overexpression of LMP1 resulted in increased ubiquitination of p53 suggesting that the decreased p53 protein levels by LMP1 was due to increased degradation of the protein. The reduction of p53 protein levels was independent of the PI3K-Akt pathway. CONCLUSIONS: LMP1, but not LMP2A, reduced p53 protein levels through the increase in the polyubiquitination of p53 protein and was independent of the PI3K-Akt pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...