Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
5.
Faraday Discuss ; 239(0): 328-338, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848764

RESUMO

Cu(In,Ga)S2 holds the potential to become a prime candidate for use as the top cell in tandem solar cells owing to its tunable bandgap from 1.55 eV (CuInS2) to 2.50 eV (CuGaS2) and favorable electronic properties. Devices above 14% power conversion efficiency (PCE) can be achieved by replacing the CdS buffer layer with a (Zn,Mg)O or Zn(O,S) buffer layer. However, the maximum achievable PCE of these devices is limited by the necessary high heating temperatures during or after buffer deposition, as this leads to a drop in the quasi-Fermi level splitting (qFLs) and therefore the maximum achievable open-circuit voltage (VOC). In this work, a low-temperature atomic layer deposited (Zn,Sn)O thin film is explored as a buffer layer to mitigate the drop in the qFLs. The devices made with (Zn,Sn)O buffer layers are characterized by calibrated photoluminescence and current-voltage measurements to analyze the optoelectronic and electrical characteristics. An improvement in the qFLs after buffer deposition is observed for devices prepared with the (Zn,Sn)O buffer deposited at 120 °C. Consequently, a device with a VOC value above 1 V was achieved. A 14% PCE is externally measured and certified for the best solar cell. The results show the necessity of developing a low-temperature buffer deposition process to maintain and translate absorber qFLs to device VOC.

6.
ACS Appl Mater Interfaces ; 14(7): 9676-9684, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35134299

RESUMO

Copper indium disulfide (CuInS2) grown under Cu-rich conditions exhibits high optical quality but suffers predominantly from charge carrier interface recombination, resulting in poor solar cell performance. An unfavorable "cliff"-like conduction band alignment at the buffer/CuInS2 interface could be a possible cause of enhanced interface recombination in the device. In this work, we exploit direct and inverse photoelectron spectroscopy together with electrical characterization to investigate the cause of interface recombination in chemical bath-deposited Zn(O,S)/co-evaporated CuInS2-based devices. Temperature-dependent current-voltage analyses indeed reveal an activation energy of the dominant charge carrier recombination path, considerably smaller than the absorber bulk band gap, confirming the dominant recombination channel to be present at the Zn(O,S)/CuInS2 interface. However, photoelectron spectroscopy measurements indicate a small (0.1 eV) "spike"-like conduction band offset at the Zn(O,S)/CuInS2 interface, excluding an unfavorable energy-level alignment to be the prominent cause for strong interface recombination. The observed band bending upon interface formation also suggests Fermi-level pinning not to be the main reason, leaving near-interface defects (as recently observed in Cu-rich CuInSe2) as the likely reason for the performance-limiting interface recombination.

7.
ACS Appl Mater Interfaces ; 13(11): 13009-13021, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689261

RESUMO

Thin film semiconductors grown using chemical bath methods produce large amounts of waste solvent and chemicals that then require costly waste processing. We replace the toxic chemical bath deposited CdS buffer layer from our Cu(In,Ga)(S,Se)2 (CIGS)-based solar cells with a benign inkjet-printed and annealed Zn(O,S) layer using 230 000 times less solvent and 64 000 times less chemicals. The wetting and final thickness of the Zn(O,S) layer on the CIGS is controlled by a UV ozone treatment and the drop spacing, whereas the annealing temperature and atmosphere determine the final chemical composition and band gap. The best solar cell using a Zn(O,S) air-annealed layer had an efficiency of 11%, which is similar to the best conventional CdS buffer layer device fabricated in the same batch. Improving the Zn(O,S) wetting and annealing conditions resulted in the best device efficiency of 13.5%, showing the potential of this method.

8.
Nat Commun ; 11(1): 3634, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686684

RESUMO

The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells.

9.
Ann Surg Innov Res ; 7(1): 9, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23875697

RESUMO

BACKGROUND: The quality and viability of mastectomy flaps remain a central challenge in reconstructive surgery, particularly for immediate breast reconstruction. Insufficient perfusion in tissue flaps is a leading cause of early complications following reconstructive procedures, and clinical judgment alone is not completely reliable for the assessment of flap viability. Accurate and reliable intraoperative methods for assessment of tissue perfusion are needed to help surgeons identify tissue at risk for ischemia and necrosis, thereby allowing for maneuvers to improve tissue flap viability. METHODS: This study evaluates the use of intraoperative laser angiography using the SPY System (LifeCell Corp., Branchburg, NJ) for the assessment of perfusion in mastectomy flaps for immediate breast reconstruction. The SPY System uses the contrast agent indocyanine green, which has an excellent safety profile and pharmacokinetics that allow for repeat evaluations during the same surgical procedure. In recent work, the SPY System has demonstrated high sensitivity and specificity for detection of tissues at risk for ischemia and necrosis during reconstructive surgery. Using a retrospective, chart-review design, the authors compared consecutive cases of immediate breast reconstruction using a prosthesis, before and after implementation of the SPY System. RESULTS: Ninety-one subjects were included in the analysis: 52 prior to SPY (Pre-SPY) and 39 after implementation of SPY (Post-SPY). Baseline characteristics were similar between the groups. Both groups had high rates of comorbidities, chemotherapy, and radiation therapy. The rate of postoperative complications was two-fold higher in the Pre-SPY group compared to the Post-SPY group (36.5% vs. 17.9%); this difference was of borderline significance (P = 0.0631). However, mean number of repeat visits to the OR per patient was significantly higher in the Pre-SPY group (1.21 ± 1.47 vs. 0.41 ± 0.71; P = 0.0023). Of the seven patients with complications in the Post-SPY group, five were identified by SPY as having poor flap perfusion; none were identified by clinical judgment alone. CONCLUSIONS: This study suggests that the SPY System can contribute to reduced ischemia-related complications in a population of women undergoing immediate breast reconstruction following mastectomy for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...