Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(10): 230387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37885992

RESUMO

Proterosuchidae represents the oldest substantial diversification of Archosauromorpha and plays a key role in understanding the biotic recovery after the end-Permian mass extinction. Proterosuchidae was long treated as a wastebasket taxon, but recent revisions have reduced its taxonomic content to five valid species from the latest Permian of Russia and the earliest Triassic (Induan) of South Africa and China. In addition to these occurrences, several isolated proterosuchid bones have been reported from the Induan Panchet Formation of India for over 150 years. Following the re-study of historical specimens and newly collected material from this unit, we erect the new proterosuchid species Samsarasuchus pamelae, which is represented by most of the presacral vertebral column. We also describe cf. proterosuchid and proterosuchid cranial, girdle and limb bones that are not referred to Samsarasuchus pamelae. Phylogenetic analyses recovered Samsarasuchus pamelae within the new proterosuchid clade Chasmatosuchinae. The taxonomic diversity of Proterosuchidae is substantially expanded here, with at least 11 nominal species and several currently unnamed specimens, and a biogeographical range encompassing present-day South Africa, China, Russia, India, Brazil, Uruguay and Australia. This indicates a broader taxonomic, phylogenetic and biogeographic diversification of Proterosuchidae than previously thought in the aftermath of the end-Permian mass extinction.

2.
R Soc Open Sci ; 7(7): 200116, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874620

RESUMO

Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian-Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform Euparkeria capensis from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor. Euparkeria has been widely used as an outgroup in phylogenetic analyses and when investigating patterns of trait evolution among archosaurs. Although described monographically in 1965, subsequent years have seen great advances in the understanding of early archosaurs and in imaging techniques. Here, the cranium and mandible of Euparkeria are fully redescribed and documented using all fossil material and computed tomographic data. Details previously unclear are fully described, including vomerine dentition, the epiptergoid, number of premaxillary teeth and palatal arrangement. A new diagnosis and cranial and braincase reconstruction is provided, and an anatomical network analysis is performed on the skull of Euparkeria and compared with other amniotes. The modular composition of the cranium suggests a flexible skull well adapted to feeding on agile food, but with a clear tendency towards more carnivorous behaviour, placing the taxon at the interface between ancestral diapsid and crown archosaur ecomorphology, corresponding to increases in brain size, visual sensitivity, upright locomotion and metabolism around this point in archosauriform evolution. The skull of Euparkeria epitomizes a major evolutionary transition, and places crown archosaur morphology in an evolutionary context.

3.
PeerJ ; 7: e6435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809443

RESUMO

Erythrosuchidae is a clade of early archosauriform reptiles, which were apex predators in many late Early and Middle Triassic ecosystems, following the Permo-Triassic mass extinction. Erythrosuchids had a worldwide distribution, with well-preserved fossil material known from South Africa, European Russia, and China. We here redescribe the anatomy and revise the taxonomy of Guchengosuchus shiguaiensis, which is one of the stratigraphically oldest erythrosuchids and is known from a single partial skeleton from the lowermost Middle Triassic (lower Anisian) lower Ermaying Formation of Shaanxi Province, China. We provide a new differential diagnosis for Guchengosuchus shiguaiensis, and identify a series of autapomorphies relating to the morphologies of the skull roof and vertebrae. Incorporating updated anatomical information for Guchengosuchus into the most comprehensive morphological phylogenetic analysis available for early archosauromorphs recovers it as an early branching member of Erythrosuchidae, outside of the clade formed by Garjainia, Erythrosuchus, Chalishevia, and Shansisuchus. Fugusuchus hejiapanensis, from the uppermost Lower Triassic to lower Middle Triassic Heshanggou Formation of China, is recovered as the earliest branching member of Erythrosuchidae.

4.
R Soc Open Sci ; 5(4): 171411, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765628

RESUMO

How historical connections, events and cultural proximity can influence human development is being increasingly recognized. One aspect of history that has only recently begun to be examined is deep cultural ancestry, i.e. the vertical relationships of descent between cultures, which can be represented by a phylogenetic tree of descent. Here, we test whether deep cultural ancestry predicts the United Nations Human Development Index (HDI) for 44 Eurasian countries, using language ancestry as a proxy for cultural relatedness and controlling for three additional factors-geographical proximity, religion and former communism. While cultural ancestry alone predicts HDI and its subcomponents (income, health and education indices), when geographical proximity is included only income and health indices remain significant and the effect is small. When communism and religion variables are included, cultural ancestry is no longer a significant predictor; communism significantly negatively predicts HDI, income and health indices, and Muslim percentage of the population significantly negatively predicts education index, although the latter result may not be robust. These findings indicate that geographical proximity and recent cultural history-especially communism-are more important than deep cultural factors in current human development and suggest the efficacy of modern policy initiatives is not tightly constrained by cultural ancestry.

5.
BMC Evol Biol ; 16: 188, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628503

RESUMO

BACKGROUND: Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. RESULTS: Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. CONCLUSIONS: Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Filogenia , Animais , Ecossistema , Crânio/anatomia & histologia , Fatores de Tempo
6.
R Soc Open Sci ; 3(7): 160072, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493766

RESUMO

Since its discovery, Euparkeria capensis has been a key taxon for understanding the early evolution of archosaurs. The braincase of Euparkeria was described based on a single specimen, but much uncertainty remained. For the first time, all available braincase material of Euparkeria is re-examined using micro-computed tomography scanning. Contrary to previous work, the parabasisphenoid does not form the posterior border of the fenestra ovalis in lateral view, but it does bear a dorsal projection that forms the anteroventral half of the fenestra. No bone pneumatization was found, but the lateral depression of the parabasisphenoid may have been pneumatic. We propose that the lateral depression likely corresponds to the anterior tympanic recess present in crown archosaurs. The presence of a laterosphenoid is confirmed for Euparkeria. It largely conforms to the crocodilian condition, but shows some features which make it more similar to the avemetatarsalian laterosphenoid. The cochlea of Euparkeria is elongated, forming a deep cochlear recess. In comparison with other basal archosauromorphs, the metotic foramen is much enlarged and regionalized into vagus and recessus scalae tympani areas, indicating an increase in its pressure-relief mechanism. The anterior semicircular canal is extended and corresponds to an enlarged floccular fossa. These aspects of the braincase morphology may be related to the development of a more upright posture and active lifestyle. They also indicate further adaptations of the hearing system of Euparkeria to terrestriality.

7.
R Soc Open Sci ; 3(3): 150674, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27069658

RESUMO

For the first time, a phylogenetic analysis including all putative euparkeriid taxa is conducted, using a large data matrix analysed with maximum parsimony and Bayesian analysis. Using parsimony, the putative euparkeriid Dorosuchus neoetus from Russia is the sister taxon to Archosauria + Phytosauria. Euparkeria capensis is placed one node further from the crown, and forms a euparkeriid clade with the Chinese taxa Halazhaisuchus qiaoensis and 'Turfanosuchus shageduensis' and the Polish taxon Osmolskina czatkowicensis. Using Bayesian methods, Osmolskina and Halazhaisuchus are sister taxa within Euparkeriidae, in turn sister to 'Turfanosuchus shageduensis' and then Euparkeria capensis. Dorosuchus is placed in a polytomy with Euparkeriidae and Archosauria + Phytosauria. Although conclusions remain tentative owing to low node support and incompleteness, a broad phylogenetic position close to the base of Archosauria is confirmed for all putative euparkeriids, and the ancestor of Archosauria +Phytosauria is optimized as similar to euparkeriids in its morphology. Ecomorphological characters and traits are optimized onto the maximum parsimony strict consensus phylogeny presented using squared change parsimony. This optimization indicates that the ancestral archosaur was probably similar in many respects to euparkeriids, being relatively small, terrestrial, carnivorous and showing relatively cursorial limb morphology; this Bauplan may have underlain the exceptional radiaton and success of crown Archosauria.

8.
PeerJ ; 2: e658, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469319

RESUMO

The South African species Euparkeria capensis is of great importance for understanding the early radiation of archosauromorphs (including archosaurs) following the Permo-Triassic mass extinction, as most phylogenetic analyses place it as the sister taxon to crown group Archosauria within the clade Archosauriformes. Although a number of species from Lower-Middle Triassic deposits worldwide have been referred to the putative clade Euparkeriidae, the monophyly of Euparkeriidae is controversial and has yet to be demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently suggested to be euparkeriids: Halazhaisuchus qiaoensis, 'Turfanosuchus shageduensis', and Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying Formation of northern China. Here, we reassess the taxonomy and systematics of these taxa. We regard Wangisuchus tzeyii as a nomen dubium, because the holotype is undiagnostic and there is no convincing evidence that the previously referred additional specimens represent the same taxon as the holotype. We also regard 'Turfanosuchus shageduensis' as a nomen dubium as we are unable to identify any diagnostic features. We refer the holotype to Archosauriformes, and more tentatively to Euparkeriidae. Halazhaisuchus qiaoensis and the holotype of 'Turfanosuchus shageduensis' are resolved as sister taxa in a phylogenetic analysis, and are in turn the sister taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae that is the sister to Archosauria+Phytosauria. This is the first quantitative phylogenetic analysis to recover a non-monospecific, monophyletic Euparkeriidae, but euparkeriid monophyly is only weakly supported and will require additional examination. Given their similar sizes, stratigraphic positions and phylogenetic placement, the holotype of 'Turfanosuchus shageduensis' may represent a second individual of Halazhaisuchus qiaoensis, but no apomorphies or unique character combination can be identified to unambiguously unite the two. Our results have important implications for understanding the species richness and palaeobiogeographical distribution of early archosauriforms.

9.
PLoS One ; 9(10): e109717, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290449

RESUMO

The lower jaw of an unidentified Pennsylvanian (Late Carboniferous) tetrapod from Nova Scotia--the "Parrsboro jaw"--is redescribed in the light of recent tetrapod discoveries and work on evolution of tetrapod mandibular morphology and placed for the first time in a numerical cladistics analysis. All phylogenetic analyses place the jaw in a crownward polytomy of baphetids, temnospondyls, and embolomeres. Several features resemble baphetids and temnospondyls including dermal ornamentation, absence of coronoid teeth, and presence of coronoid shagreen. Dentary dentition is most similar to Baphetes. An adsymphysial toothplate may not preclude temnospondyl affinity. An apparent large exomeckelian fenestra, with the dorsal foraminal margins formed by an unossified element, echoes the morphology of the stem tetrapod Sigournea and is unusually primitive given the other features of the jaw. The jaw may thus provide an example of an intermediate stage in Meckelian element evolution.


Assuntos
Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Extinção Biológica , Nova Escócia , Osteogênese/fisiologia , Filogenia , Dente/fisiologia , Vertebrados/classificação
10.
BMC Evol Biol ; 14: 128, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916124

RESUMO

BACKGROUND: The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable 'wildcards' in morphological phylogenetic analyses, reducing phylogenetic resolution. RESULTS: We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. CONCLUSIONS: Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early archosaurs were distributed over much or all of Pangaea although they may have initially been relatively rare members of faunal assemblages.


Assuntos
Aves/classificação , Dinossauros/anatomia & histologia , Fósseis , Répteis/classificação , Animais , Argentina , Evolução Biológica , Aves/anatomia & histologia , Aves/genética , Dinossauros/classificação , Dinossauros/genética , Especiação Genética , Filogenia , Répteis/anatomia & histologia , Répteis/genética
11.
Biol Lett ; 8(4): 674-7, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22513278

RESUMO

Abiotic and biological factors have been hypothesized as controlling maximum body size of tetrapods and other animals through geological time. We analyse the effects of three abiotic factors--oxygen, temperature and land area--on maximum size of Permian-Jurassic archosauromorphs and therapsids, and Cenozoic mammals, using time series generalized least-squares regression models. We also examine maximum size growth curves for the Permian-Jurassic data by comparing fits of Gompertz and logistic models. When serial correlation is removed, we find no robust correlations, indicating that these environmental factors did not consistently control tetrapod maximum size. Gompertz models--i.e. exponentially decreasing rate of size increase at larger sizes--fit maximum size curves far better than logistic models. This suggests that biological limits such as reduced fecundity and niche space availability become increasingly limiting as larger sizes are reached. Environmental factors analysed may still have imposed an upper limit on tetrapod body size, but any environmentally imposed limit did not vary substantially during the intervals examined despite variation in these environmental factors.


Assuntos
Adaptação Biológica , Padronização Corporal/fisiologia , Tamanho Corporal , Meio Ambiente , Mamíferos/fisiologia , Animais , Fêmur/anatomia & histologia , Fêmur/fisiologia , Fósseis , Análise dos Mínimos Quadrados , Modelos Logísticos , Mamíferos/anatomia & histologia , Oxigênio/fisiologia , Temperatura , Fatores de Tempo
12.
Proc Biol Sci ; 279(1736): 2180-7, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22298850

RESUMO

A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252-201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian-Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle-early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted 'rule' that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.


Assuntos
Evolução Biológica , Tamanho Corporal , Dinossauros/anatomia & histologia , Animais , Carnivoridade , Extinção Biológica , Fêmur/anatomia & histologia , Herbivoria , Mamíferos , Modelos Biológicos , Filogenia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...