Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37919242

RESUMO

Size-dependent two-dimensional (2D) materials (e.g., graphene) have been recently used to improve their performance in various applications such as membrane filtration, energy storage, and electrocatalysts. It has also been demonstrated that 2D nanosheets can be one of the promising support materials for decorating nanoparticles (NPs). However, the optimum nanosheet size (lateral length and thickness) for supporting NPs has not yet been explored to enhance their catalytic performance. Herein, we elucidate the mechanism behind size-dependent graphene (GP) as a support due to which gold nanoparticles (AuNPs) are used as an active catalyst for the hydrogen evolution reaction (HER). Surprisingly, the decoration of AuNPs increased with the increasing nanosheet size, counter to what is widely reported in the literature (high surface area for smaller nanosheet size). We found that a large graphene nanosheet (lGP; ∼800 nm) used as the AuNP support (lGP/AuNPs) exhibited superior performance for the HER with long-term stability. The lGP/AuNPs with a suitable content of AuNPs provides a low overpotential and a small Tafel slope, being lower than that of other reported carbon-based HER electrocatalysts. This results from highly exposed active sites of well-dispersed AuNPs on lGP giving high conductivity. The laminar structure of the stacked graphene nanosheets and the high wettability of the lGP/AuNPs electrode surface also play crucial roles in enhancing electrolytes for penetration in the electrode, suggesting a highly electrochemical surface area. Moreover, machine learning (Random Forest) was also used to reveal the essential features of the advanced catalytic material design for catalyst-based applications.

2.
RSC Adv ; 12(53): 34293-34302, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545579

RESUMO

The ketonization of fatty acid with subsequent McLafferty rearrangement of the fatty ketone allows the deoxygenation to hydrocarbons. Here, we report the cascade reaction of palmitic acid (C16) to hydrocarbons (≤C14) over lepidocrocite-type alkali titanate K0.8Zn0.4Ti1.6O4, K0.8Mg0.4Ti1.6O4, and K0.8Li0.27Ti1.73O4 and the reassembled TiO2 catalysts at ≤400 °C under atmospheric N2 in a continuous fixed-bed flow reactor. The C16 acid is coupled to C31 ketone prior to the scissions mostly to a C17 methyl ketone and C14 hydrocarbons (i.e., the McLafferty rearrangement). The hydrocarbons yield increases with temperature and is proportional to partial charge at the O atom, suggesting that basic sites are responsible for C31 ketone scissions. The layered alkali titanate catalysts with two-dimensional (2D) space inhibit diffusion of the ketone primarily formed and promote its scissions to hydrocarbons within the confined space. Otherwise, low hydrocarbons yield (but high ketone yield) is obtained over TiO2 and the Mg/Al mixed oxide catalysts possessing no interlayer space. Meanwhile, the semi-batch experiment with pre-intercalated palmitic acid favors a direct deoxygenation, demonstrating the essential role of reaction mode toward ketone scission reaction pathway. Over K0.8Li0.27Ti1.73O4, the complete palmitic acid conversion leads to ∼47% hydrocarbons yield, equivalent to ∼80% reduction of the oxygen content in the feed under N2.

3.
Inorg Chem ; 60(21): 16326-16336, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644500

RESUMO

The studies on mechanical treatments of layered alkali metal oxides are limited despite their diverse compositions/structures and potential for property tuning. In this work, we vibratory mill Cs0.7Zn0.35Ti1.65O4, K0.8Zn0.4Ti1.6O4, and Cs2Ti6O13 for up to 4 h, during which the lepidocrocite-type structure and the plate-like morphology are well preserved. X-ray diffraction (XRD) indicates a tiny (≤0.6 Å) interlayer expansion accompanied by the enhancement of the preferred orientation along the stacking direction. Chemical analyses across multiple length scales suggest Cs deintercalation, elemental redistributions, and bulk-to-surface (or crystal edge) Cs migration. This ball-milling-induced Cs-rich moiety partially blocks the surface acid sites, although the solids still show a dominating acidic character. The ball-milled samples Cs0.7-pZn0.35-qTi1.65O4-δ contain vacancies between the sheets (p) and at the sheets (q and δ). It is deduced from Sanderson's electronegativity equalization principle and experimentally verified by X-ray photoelectron spectroscopy (XPS) that ball milling increases (decreases) the partial charge at the surface acidic Ti4+/Zn2+ (basic O2-) sites. These nonporous solids (≤20 m2·g-1) contain water sorbed on the external surface as high as 1.1 mol·mol-1, which is comparable to that in a water-intercalated sample. Our work expands the current understanding of the reactivity vs robustness in layered alkali titanates under physically demanding conditions, complementing knowledge gathered via the soft chemistry approach.

4.
Inorg Chem ; 58(10): 6885-6892, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31042363

RESUMO

Proton-free, alkali-containing layered metal oxides are thermally stable compared to their protonic counterparts, potentially allowing catalysis by Lewis acid sites at elevated temperatures. However, the Lewis acidic nature of these materials has not been well explored, as alkali ions are generally considered to promote basic but to suppress acidic character. Here, we report a rare example of an unusually acidic cesium-containing oxide Cs xTi2- yM yO4 ( x = 0.67 or 0.70; M = Ti vacancy □ or Zn). These lepidocrocite-type microcrystals desorbed NH3 at >400 °C with a total acidity of ≲410 µmol g-1 at a specific surface area of only 5 m2 g-1, without the need for lengthy proton-ion exchange, pillaring, delamination, or restacking. The soft and easily polarized Cs+ ion essentially drives the formation of the Lewis acidic site on the surfaces as suggested by IR of sorbed pyridine. The two-dimensional layered structure was preserved after the oxide was employed in the ethanol conversion at 380 °C, the temperature at which the protonic form could have converted to anatase. The structure was also retained after the NH3 temperature-programmed desorption measurement up to 700 °C. The production of ethylene from ethanol, well-known to occur over acid sites, unambiguously confirmed the acidic nature of this cesium titanate.

5.
Langmuir ; 35(21): 6838-6852, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31039313

RESUMO

Ordered-hexagonal silica materials, such as Mobil crystalline material-41 and Santa Barbara amorphous-15, have important applications in heterogeneous catalysis and biomass conversion due to their chemical stability and mesoporous structure. Low-temperature grafting (LG) is one of the most common functionalization methods used to modify the acidity/basicity or hydrophobicity/hydrophilicity of the surface. However, the materials prepared by this method are prone to leaching of functional groups into the reaction medium. The exact nature of the leaching phenomenon has not been fully addressed in the literature. In this contribution, we have investigated this process at the molecular level by combining well-controlled reaction experiments and several characterization techniques (Fourier transform infrared, 1H-29Si cross-polarization magic-angle spinning NMR, X-ray diffraction, thermogravimetric analysis, and N2 adsorption-desorption). We have found that leaching is originated by the presence of terminal surface silanols, which render the catalysts susceptible to the attack of water and polar compounds. Hence, instead of simple detaching of functional groups, leaching can be better described as a partial dissolution of the surface layers of the silica, which of course also removes the functional groups during this process. Therefore, an effective strategy to minimize leaching is to reduce the density of free silanols via full functionalization of the surface. We propose a novel silylation method, high-temperature grafting, which allows the grafting process to be conducted at high temperatures (180 °C) under solvent-free conditions. By this method, a more complete silylation of surface silanols can be obtained. Consequently, the samples prepared by this high-temperature grafting method show to be highly stable during acid-catalyzed alkylation reaction, conducted under severe conditions (high temperature and in the presence of polar solvents).

6.
ChemSusChem ; 10(13): 2823-2832, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28480614

RESUMO

Acylation is an effective C-C bond-forming reaction to condense acetic acid and lignin-derived aromatic compounds into acetophenones, valuable precursors to fuels and chemicals. However, acetic acid is intrinsically an ineffective acylating agent. Here, we report that its acylation activity can be greatly enhanced by forming intermediate aromatic esters directly derived from acetic acid and phenolic compounds. Additionally, the acylation reaction was studied in the liquid phase over acid zeolites and was found to happen in two steps: 1) formation of an acylium ion and 2) C-C bond formation between the acylium ion and the aromatic substrate. Each of these steps may be rate-limiting, depending on the type of acylating agent and the aromatic substrate. Oxygen-containing substituents, such as -OH and -OCH3 , can activate aromatic substrates for step 2, with -OH> -OCH3 , whereas alkyl substituent -R cannot. At the same time, aromatic esters can rearrange to acetophenones by both an intramolecular pathway and, preferentially, an intermolecular one.


Assuntos
Ácido Acético/química , Benzeno/química , Ésteres/química , Acilação , Cinética , Modelos Moleculares , Conformação Molecular , Teoria Quântica
7.
ChemSusChem ; 10(7): 1631-1639, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-27910256

RESUMO

The simultaneous conversion of cyclopentanone and m-cresol has been investigated on a series of solid-acid catalysts. Both compounds are representative of biomass-derived streams. Cyclopentanone can be readily obtained from sugar-derived furfurals through Piancatelli rearrangement under reducing conditions. Cresol represents a family of phenolic compounds, typically obtained from the depolymerization of lignin. In the first biomass conversion strategy proposed here, furfural is converted in high yields and selectivity to cyclopentanone (CPO) over metal catalysts such as Pd-Fe/SiO2 at 600 psi (∼4.14 MPa) H2 and 150 °C. Subsequently, CPO and cresol are further converted through acid-catalyzed hydroxyalkylation. This C-C coupling reaction may be used to generate products in the molecular weight range that is appropriate for transportation fuels. As molecules beyond this range may be undesirable for fuel production, a catalyst with a suitable porous structure may be advantageous for controlling the product distribution in the desirable range. If Amberlyst resins were used as a catalyst, C12 -C24 products were obtained whereas when zeolites with smaller pore sizes were used, they selectively produced C10 products. Alternatively, CPO can undergo the acid-catalyzed self-aldol condensation to form C10 bicyclic adducts. As an illustration of the potential for practical implementation of this strategy for biofuel production, the long-chain oxygenates obtained from hydroxyalkylation/aldol condensation were successfully upgraded through hydrodeoxygenation to a mixture of linear alkanes and saturated cyclic hydrocarbons, which in practice would be direct drop-in components for transportation fuels. Aqueous acidic environments, which are typically encountered during the liquid-phase upgrading of bio-oils, would inhibit the efficiency of base-catalyzed processes. Therefore, the proposed acid-catalyzed upgrading strategy is advantageous for biomass conversion in terms of process simplicity.


Assuntos
Cresóis/química , Ciclopentanos/química , Furaldeído/química , Alquilação , Oxigênio/química , Temperatura
8.
ChemSusChem ; 9(7): 736-48, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26938793

RESUMO

A new type of catalyst has been designed to adjust the basicity and level of molecular confinement of KNaX faujasites by controlled incorporation of Mg through ion exchange and precipitation of extraframework MgO clusters at varying loadings. The catalytic performance of these catalysts was compared in the conversion of C2 and C4 aldehydes to value-added products. The product distribution depends on both the level of acetaldehyde conversion and the fraction of magnesium as extraframework species. These species form rather uniform and highly dispersed nanostructures that resemble nanopetals. Specifically, the sample containing Mg only in the form of exchangeable Mg(2+) ions has much lower activity than those in which a significant fraction of Mg exists as extraframework MgO. Both the (C6+C8)/C4 and C8/C6 ratios increase with additional extraframework Mg at high acetaldehyde conversion levels. These differences in product distribution can be attributed to 1) higher basicity density on the samples with extraframework species, and 2) enhanced confinement inside the zeolite cages in the presence of these species. Additionally, the formation of linear or aromatic C8 aldehyde compounds depends on the position on the crotonaldehyde molecule from which abstraction of a proton occurs. In addition, catalysts with different confinement effects result in different C8 products.


Assuntos
Óxido de Magnésio/química , Zeolitas/química , Catálise , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Difração de Raios X
9.
J Colloid Interface Sci ; 436: 37-40, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25265583

RESUMO

In this research, catalytic activity of the modified natural containing Fe-clay, Fenton-like catalyst, toward successful decolorization of methylene blue (MB) and degradation of phenol (PhOH) was demonstrated. Among the natural containing Fe-clay prepared only by thermal treatment, the sample treated at 500°C provides a high Fenton oxidation activity presumably due to high number of available Fe active sites. However, the efficient use of treated natural containing Fe-clay is restricted due to the loss in BET surface area during thermal treatment process. Interestingly, modification by the thermal treatment and subsequent re-swelling cannot only generate the active Fe species, but also enhance the basal space that facilitates diffusion of the reagents toward the active sites within the clay layers. It is expected that the active Fe species formed and retained by thermal treatment and re-swelling process which is on the surface of the catalyst reacts with hydrogen peroxide and leads to the formation of active oxidant that remove the MB and PhOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...