Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0233609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442219

RESUMO

Aegle marmelos L. (Bael) is a native tree fruit species in the Indian subcontinent and Southeast Asia. Bael is a popular fruit because of its significant nutritional and medicinal properties. However, bael is an underutilized fruit species in Sri Lanka. Thus, Fruit Crop Research and Development Station of the Department of Agriculture of Sri Lanka has selected five elite bael accessions (Beheth Beli, Paragammana, Mawanella, Rambukkana, and Polonnaruwa-Supun). We assessed these five accessions for the variation of the fruit size, pulp, organoleptic preference, elemental properties, genetic diversity, and evolutionary history. The fruits at the golden-ripe stage were collected during the peak fruiting seasons in 2015, 2016, and 2017. The fruit size, pulp, shell thickness, and seed size were measured and subjected to the General Linear Model (GLM) and Principal Component (PC) Analyses. The fruit pulp was distributed among a group of 30 taste-panelists to rank for the parameters: external appearance, flesh color, aroma, texture, sweetness, and overall preference. The rank data were subjected to association and PC analyses. The elemental contents of the fruit pulp samples were measured using Inductively coupled plasma mass spectrometry and subjected to GLM and PC analyses. We observed a significant diversity in fruit size, organoleptic preference, and elemental contents among bael accessions. Rambukkana and Polonnaruwa-Supun yield the biggest and most preferred fruits. We used trnH-psbA, atpB-rbcL spacer, matk-trnT spacer, and trnL markers to construct phylogenies. Sri Lankan bael split from an Indian counterpart, approximately 8.52 MYA in the Pliocene epoch. However, broader germplasm of Indian bael must be assessed to see the presence of any independent evolution within Sri Lanka.


Assuntos
Aegle/química , Frutas/química , Extratos Vegetais/química , Aegle/classificação , Filogenia , Sri Lanka
2.
BMC Infect Dis ; 16(1): 607, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782812

RESUMO

BACKGROUND: Mycobacteria have a spectrum of virulence and different susceptibilities to antibiotics. Distinguishing mycobacterial species is vital as patients with non-tuberculous mycobacterial (NTM) infections present clinical features that are similar to those of patients with tuberculosis. Thus, rapid differentiation of Mycobacterium tuberculosis complex from NTM is critical to administer appropriate treatment. Hence the aim of the study was to rapid identification of mycobacterial species present in bronchial washings using multiplex real time Polymerase Chain Reaction (PCR) and to determine the drug susceptibility in identified mycobacterial species. METHODS: Sputum smear negative bronchoscopy specimens (n = 150) were collected for a period of one year, from patients attending the General Hospital Kandy, Sri Lanka. The specimens were processed with modified Petroff's method and were cultured on Löwenstein- Jensen medium. DNA, extracted from the mycobacterial isolates were subjected to a SYBR green mediated real time multiplex, PCR assay with primers specific for the M. tuberculosis complex, M. avium complex, M. chelonae-M.abscessus group and M. fortuitum group. DNA sequencing was performed for the species confirmation, by targeting the 16S rRNA gene and the drug susceptibility testing was performed for the molecularly identified isolates of M. tuberculosis and NTM. RESULTS: The optimized SYBR Green mediated multiplex real-time PCR assay was able to identify the presence of genus Mycobacterium in 25 out of 26 AFB positive isolates, two M. tuberculosis complex, three M. avium complex and two isolates belonging to M. chelonae-M. abscessus group. DNA sequencing confirmed the presence of M. tuberculosis, M. chelonae-M. abscessus, M. intracellulare, M. avium, Rhodococcus sp. and M. celatum. Remaining isolates were identified as Mycobacterium sp. All the NTM isolates were sensitive to amikacin and seven were resistant to ciproflaxacin. Twenty two of the NTM isolates and the isolate Rhodococcus was resistant to clarithromycin. The two isolates of M. tuberculosis were sensitive to all first line anti tuberculosis drugs. CONCLUSION: The optimized SYBR Green mediated multiplex real time PCR assay could be an effective tool for the rapid differentiation of pathogenic M. tuberculosis complex from the opportunistic nontuberculous mycobacteria and also it confirmed the presence of NTM in 15.3 % of the study population.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/microbiologia , Criança , Primers do DNA , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Mycobacterium tuberculosis/isolamento & purificação , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Escarro/microbiologia , Sri Lanka , Tuberculose/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...