Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eadj9303, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669340

RESUMO

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescales agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.


Assuntos
Córtex Motor , Vigília , Animais , Vigília/fisiologia , Camundongos , Córtex Motor/fisiologia , Modelos Neurológicos , Encéfalo/fisiologia , Neurônios/fisiologia , Simulação por Computador
2.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546833

RESUMO

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. Here we offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality - a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescale agrees with established theory of critical dynamics. Our results suggest that cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...