Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(22): E45-E49, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117920

RESUMO

In this paper, we report stabilization of self-mode-locked two-section quantum-dash lasers on the widest range of delay using simultaneous optical injection and optical feedback. With continuous-wave optical injection, various wavelengths spanning a range from 1568 to 1578 nm were investigated and optimum wavelengths (1571.210 to 1572.710) yielding the narrowest RF linewidth and reduced timing jitter of slave laser were identified. In addition, the dependence of RF linewidth and pulse repetition rate on injected wavelength was further explored. Our results indicate that simultaneous optical feedback and optical injection significantly improves the RF linewidth across the widest delay range compared to optical feedback alone. Under fully resonant feedback and optimum injection parameters, a minimum RF linewidth of 1 kHz (instrument limited) was achieved with simultaneous optical injection plus optical feedback, which was >2× lower than optical feedback alone and more than 100× lower than free-running. This stabilization technique is implemented in an all-optical arrangement without optical/electrical conversion, which is ideal for high-repetition-rate devices and photonic integration.

2.
Opt Express ; 26(4): 4581-4592, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475307

RESUMO

We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives the narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths of 80 and 140 m narrows the RF linewidth by ∼ 4-67x and ∼ 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

3.
Opt Lett ; 42(17): 3486-3489, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957069

RESUMO

We propose a novel self-homodyne optical-electrical-optical clock recovery technique for binary phase-shift keying (BPSK) signals using commercial optical and electrical components. We present the principle of operation as well as a proof-of-concept experiment for a 10.7 Gb/s BPSK signal clock recovery transmitted over a dispersion-compensated link of 20 km of single-mode fiber. Suppression of pattern-related frequency noise at the output of the recovered clock is shown. The timing jitter of the recovered clock at 10.7 GHz was measured to be ∼450 fs (integration range: 100 Hz-10 MHz).

4.
Opt Express ; 25(14): 15796-15805, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789092

RESUMO

We experimentally investigate the RF linewidth and timing jitter over a wide range of delay tuning in a self-mode-locked two-section quantum dash lasers emitting at ~ 1.55µm and operating at ~ 21 GHz repetition rate subject to single and dual optical feedback into gain section. Various feedback conditions are investigated and optimum levels determined for narrowest linewidth and reduced timing jitter for both single and dual loop configurations. We demonstrate that dual loop feedback, with the shorter feedback cavity tuned to be fully resonant, followed by fine tuning of the phase of the longer feedback cavity, gives stable narrow RF spectra across the widest delay range, unlike single loop feedback. In addition, for dual loop configurations, under fully resonant conditions, integrated timing jitter is reduced from 3.9 ps to 295 fs [10 kHz-100 MHz], the RF linewidth narrows from 100 kHz to < 1 kHz, with more than 30 dB fundamental side-mode suppression. We show that dual loop optical feedback with separate fine tuning of both external cavities is far superior to single loop feedback, with increased system tolerance against phase delay mismatch, making it a robust and cost-effective technique for developing practical, reliable and low-noise mode-locked lasers, optoelectronic oscillators and pulsed photonic circuits.

5.
Opt Express ; 23(17): 21678-89, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368147

RESUMO

We report a unidirectional frequency dissemination scheme for high-fidelity optical carriers deployable over telecommunication networks. For the first time, a 10 Gb/s Binary Phase Shift Keying (BPSK) signal from an ultra-narrow linewidth laser was transmitted through a field-installed optical fibre with round-trip length of 124 km between Cork City and town of Clonakilty, without inline optical amplification. At the receiver, using coherent communication techniques and optical injection-locking the carrier was recovered with noise suppression. The beat signal between the original carrier at the transmitter and recovered carrier at the receiver shows a linewidth of 2.8 kHz. Long term stability measurements revealed fractional instabilities (True Allan deviation) of 3.3 × 10(-14) for 1 s averaging time, prior to phase noise cancellation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...