Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Adv Manuf Technol ; 126(9-10): 4617-4636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197058

RESUMO

Biomaterials are engineered to develop an interaction with living cells for therapeutic and diagnostic purposes. The last decade reported a tremendously rising shift in the requirement for miniaturized biomedical implants exhibiting high precision and comprising various biomaterials such as non-biodegradable titanium (Ti) alloys and biodegradable magnesium (Mg) alloys. The excellent mechanical properties and lightweight characteristics of Mg AZ91D alloy make it an emerging material for biomedical applications. In this regard, micro-electric discharge machining (µEDM) is an excellent method that can be used to make micro-components with high dimensional accuracy. In the present research, attempts were made to improve the µEDM capabilities by using cryogenically-treated copper (CTCTE) and brass tool electrodes (CTBTE) amid machining of biodegradable Mg AZ91D alloy, followed by their comparison with a pair of untreated copper (UCTE) and brass tool electrodes (UBTE) in terms of minimum machining-time and dimensional-irregularity. To investigate the possible modification on the surfaces achieved with minimum machining-time and dimensional-irregularity, the morphology, chemistry, micro-hardness, corrosion resistance, topography, and wettability of these surfaces were further examined. The surface produced by CTCTE exhibited the minimum surface micro-cracks and craters, acceptable recast layer thickness (2.6 µm), 17.45% improved micro-hardness, satisfactory corrosion resistance, adequate surface roughness (Ra: 1.08 µm), and suitable hydrophobic behavior (contact angle: 119°), confirming improved biodegradation rate. Additionally, a comparative analysis among the tool electrodes revealed that cryogenically-treated tool electrodes outperformed the untreated ones. CTCTE-induced modification on the Mg AZ91D alloy surface suggests its suitability in biodegradable medical implant applications.

2.
Int J Adv Manuf Technol ; 124(7-8): 2685-2700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567894

RESUMO

The non-degradable metallic implants, such as bone screws, often act as the source of dysfunction and harmful corrosion products in the aqueous environment inside the human body. Many of these implants are fixed either temporarily or permanently into the human body, and therefore, both need to match tight tolerances with a remarkably finished surface to eradicate burrs or striations. In this regard, the new generation of degradable magnesium (Mg) alloy implants with excellent osseointegration and low elasticity (like that of human bone), minimizing stress shielding, have been identified as potential candidates to challenge surgical procedures reintervention. However, the biological response of an implant toward the cells in vivo can be predominantly regulated by modifying the surface chemistry, morphology, and corrosion characteristics. Powder or abrasive-mixed-micro-electric discharge machining (A-M-µ-EDM) is gaining attention for executing precision machining and achieving a simultaneous surface modification on micro-manufactured surfaces, suitable for clinical applications. Therefore, the present research aimed at improving the surface characteristics of Mg AZ31B alloy via an augmented performance of A-M-µ-EDM by adopting copper and brass-micro-electrodes (C-µ-E and B-µ-E) in association with distinct abrasive particle concentrations (APCs: 0, 1.5, 3, 4.5, and 6 g/l) of bioactive zinc abrasives. To enhance the A-M-µ-EDM capabilities, the experiments were designed with a one-variable-at-a-time (OVAT) strategy, and the trial runs were conducted using different combinations of µ-electrodes and APCs. The superior performance of A-M-µ-EDM was noticed with the fusion of C-µ-E and 3 g/l APC in terms of minimum machining time (MT) and dimensional deviation (DD). The additional outcomes of this work reported favorable improvements in surface morphology, chemistry, topography, wettability, microhardness, and corrosion resistance on the A-M-µ-EDMed sample of interest.

3.
J Mater Sci Mater Med ; 31(11): 94, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33128627

RESUMO

Titanium and titanium alloys are widely used as a biomaterial due to their mechanical strength, corrosion resistance, low elastic modulus, and excellent biocompatibility. TiO2 nanotubes have excellent bioactivity, stimulating the adhesion, proliferation of fibroblasts and adipose-derived stem cells, production of alkaline phosphatase by osteoblasts, platelets activation, growth of neural cells and adhesion, spreading, growth, and differentiation of rat bone marrow mesenchymal stem cells. In this study, we investigated the functionality of fibroblast on titania nanotube layers annealed at different temperatures. The titania nanotube layer was fabricated by potentiostatic anodization of titanium, then annealed at 300, 530, and 630 °C for 5 h. The resulting nanotube layer was characterized using SEM (Scanning Electron Microscopy), TF-XRD (Thin-film X-ray diffraction), and contact angle goniometry. Fibroblasts viability was determined by the CellTiter-Blue method and cytotoxicity by Lactate Dehydrogenase test, and the cell morphology was analyzed by scanning electron microscopy. Also, cell adherence, proliferation, and morphology were analyzed by fluorescence microscopy. The results indicate that the modification in nanotube crystallinity may provide a favorable surface fibroblast growth, especially on substrates annealed at 530 and 630 °C, indicating that these properties provide a favorable template for biomedical implants.


Assuntos
Fibroblastos/metabolismo , Nanotubos/química , Titânio/química , Animais , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Cristalização , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteoblastos/citologia , Próteses e Implantes , Ratos , Células-Tronco/citologia
4.
Mater Sci Eng C Mater Biol Appl ; 103: 109850, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349471

RESUMO

The aim of this work was to evaluate the cellular response to titanium nanotube arrays with variable crystalline structure. Cytotoxicity, viability and the ability of the titania nanotube arrays to stimulate adhesion and proliferation of adipose derived stem cells (ADSCs) was evaluated. Titania nanotube arrays were fabricated by electrochemical anodization of titanium in diethyleneglycol/hydrofluoric acid electrolyte at 60 V for 6 h, then annealed at 300, 530 and 630 °C for 5 h. The nanotube arrays were characterized using scanning electron microscopy (SEM), contact angle goniometry, x-ray diffraction (XRD) and protein adsorption. ADSCs were cultured on titania nanotube arrays at a density of 1 × 104 cells/ml. The cells were allowed to adhere and to proliferate for 1, 4 and 7 days. Cell viability was characterized by the CellTiter-Blue® Cell Viability Assay; and cell morphology was characterized by SEM. Cell adhesion, proliferation and morphology were characterized using fluorescence microscopy by staining the cells with DAPI and rhodamine/phalloidin. The results from this study showed that the annealing at 300 and 530 °C formed anatase phase, and annealing at 630 °C formed anatase/rutile phase. The results indicated that the modification of the crystalline structure (i.e. anatase/rutile phase) of titania nanotube arrays influenced the ADSC adhesion and proliferation. Future studies are now directed towards evaluating differentiation of this cellular model in osteoblasts.


Assuntos
Tecido Adiposo/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nanotubos/química , Células-Tronco/metabolismo , Titânio , Tecido Adiposo/citologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco/citologia , Titânio/química , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...