Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23381, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102952

RESUMO

Dysfunction of the human voltage-gated K+ channel Kv1.1 has been associated with epilepsy, multiple sclerosis, episodic ataxia, myokymia, and cardiorespiratory dysregulation. We report here that AETX-K, a sea anemone type I (SAK1) peptide toxin we isolated from a phage display library, blocks Kv1.1 with high affinity (Ki ~ 1.6 pM) and notable specificity, inhibiting other Kv channels we tested a million-fold less well. Nuclear magnetic resonance (NMR) was employed both to determine the three-dimensional structure of AETX-K, showing it to employ a classic SAK1 scaffold while exhibiting a unique electrostatic potential surface, and to visualize AETX-K bound to the Kv1.1 pore domain embedded in lipoprotein nanodiscs. Study of Kv1.1 in Xenopus oocytes with AETX-K and point variants using electrophysiology demonstrated the blocking mechanism to employ a toxin-channel configuration we have described before whereby AETX-K Lys23 , two positions away on the toxin interaction surface from the classical blocking residue, enters the pore deeply enough to interact with K+ ions traversing the pathway from the opposite side of the membrane. The mutant channel Kv1.1-L296 F is associated with pharmaco-resistant multifocal epilepsy in infants because it significantly increases K+ currents by facilitating opening and slowing closure of the channels. Consistent with the therapeutic potential of AETX-K for Kv1.1 gain-of-function-associated diseases, AETX-K at 4 pM decreased Kv1.1-L296 F currents to wild-type levels; further, populations of heteromeric channels formed by co-expression Kv1.1 and Kv1.2, as found in many neurons, showed a Ki of ~10 nM even though homomeric Kv1.2 channels were insensitive to the toxin (Ki > 2000 nM).


Assuntos
Epilepsia , Mutação com Ganho de Função , Humanos , Peptídeos/genética , Peptídeos/farmacologia , Epilepsia/genética , Bloqueadores dos Canais de Potássio/farmacologia
2.
RSC Adv ; 12(35): 22678-22694, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105984

RESUMO

The Meyer-Schuster rearrangement of propargyl alcohols or alkynols leading to α,ß-unsaturated carbonyl compounds is well known. Yet, electrophilic halogenations of the same alkynols and their alkoxy, ester and halo derivatives are inconspicuous. This review on the halogenation reactions of propargyl alcohols and derivatives intends to give a perspective from its humble direct halogenation beginning to the present involving metal catalysis. The halogenation products of propargyl alcohols include α-fluoroenones, α-chloroenones, α-bromoenones and α-iodoenones, as well as ß-haloenones and symmetrical and mixed ß,ß-dihaloenones. They are, in essence, tri and tetrasubstituted alkenes carrying halo-functionalization at the α- or ß-carbon. This is a potential stepping stone for further construction towards challenging substituted alkenones via Pd-catalysed coupling reactions.

3.
Org Lett ; 19(10): 2592-2595, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28481553

RESUMO

A one-pot tandem Diels-Alder/Nazarov reaction of 1-aryl-3-(trimethylsilyl) ynones has been achieved to generate carbo- and heterocyclic fused ring systems in good to excellent yields. The ß-silyl effect is instrumental in accessing this otherwise challenging cascade annulation reaction. The tandem reaction proceeds in the presence of BCl3 to generate three new carbon-carbon bonds, a quaternary carbon, and two stereogenic centers with excellent diastereocontrol. A variety of substituted arenes, and even heteroaromatics, are tolerated to provide tricyclic products that are of interest as advanced intermediates toward biologically relevant compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...