Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282935

RESUMO

Short-term forecasts can provide predictions of how an epidemic will change in the near future and form a central part of outbreak mitigation and control. Renewal-equation based models are increasingly popular. They infer key epidemiological parameters from historical epidemiological data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age-groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly by the CoMix survey during the COVID-19 epidemic in England, provide a means to inform interaction between age-groups in real-time. We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2021 and November 2022. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models. Overall, incorporating age-interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age-group-interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020 - 2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future.

2.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276024

RESUMO

BackgroundShort-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. MethodsWe used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. ResultsOver 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. ConclusionsOur results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks. Code and data availabilityAll data and code are publicly available on Github: covid19-forecast-hub-europe/euro-hub-ensemble.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265046

RESUMO

BackgroundForecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. MethodsWe made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all, and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the Weighted Interval Score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. ResultsAll models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. ConclusionsAssuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20214585

RESUMO

The time-varying reproduction number (Rt: the average number secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. While new infections are not usually observed directly, they can be estimated from data. However, data may be delayed and potentially biased. We investigated the sensitivity of Rt estimates to different data sources representing Covid-19 in England, and we explored how this sensitivity could track epidemic dynamics in population sub-groups. We sourced public data on test-positive cases, hospital admissions, and deaths with confirmed Covid-19 in seven regions of England over March through August 2020. We estimated Rt using a model that mapped unobserved infections to each data source. We then compared differences in Rt with the demographic and social context of surveillance data over time. Our estimates of transmission potential varied for each data source, with the relative inconsistency of estimates varying across regions and over time. Rt estimates based on hospital admissions and deaths were more spatio-temporally synchronous than when compared to estimates from all test-positives. We found these differences may be linked to biased representations of subpopulations in each data source. These included spatially clustered testing, and where outbreaks in hospitals, care homes, and young age groups reflected the link between age and severity of disease. We highlight that policy makers could better target interventions by considering the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20186502

RESUMO

As several countries gradually release social distancing measures, rapid detection of new localised COVID-19 hotspots and subsequent intervention will be key to avoiding large-scale resurgence of transmission. We introduce ASMODEE (Automatic Selection of Models and Outlier Detection for Epidemics), a new tool for detecting sudden changes in COVID-19 incidence. Our approach relies on automatically selecting the best (fitting or predicting) model from a range of user-defined time series models, excluding the most recent data points, to characterise the main trend in an incidence. We then derive prediction intervals and classify data points outside this interval as outliers, which provides an objective criterion for identifying departures from previous trends. We also provide a method for selecting the optimal breakpoints, used to define how many recent data points are to be excluded from the trend fitting procedure. The analysis of simulated COVID-19 outbreaks suggest ASMODEE compares favourably with a state-of-art outbreak-detection algorithm while being simpler and more flexible. We illustrate our method using publicly available data of NHS Pathways reporting potential COVID-19 cases in England at a fine spatial scale, for which we provide a template automated analysis pipeline. ASMODEE is implemented in the free R package trendbreaker.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20167965

RESUMO

BackgroundSchool closures are a well-established non-pharmaceutical intervention in the event of infectious disease outbreaks, and have been implemented in many countries across the world, including the UK, to slow down the spread of SARS-CoV-2. As governments begin to relax restrictions on public life there is a need to understand the potential impact that reopening schools may have on transmission. MethodsWe used data provided by the UK Department for Education to construct a network of English schools, connected through pairs of pupils resident at the same address. We used the network to evaluate the potential for transmission between schools, and for long range propagation across the network, under different reopening scenarios. ResultsAmongst the options evaluated we found that reopening only Reception, Year 1 and Year 6 (4-6 and 10-11 year olds) resulted in the lowest risk of transmission between schools, with outbreaks within a single school unlikely to result in outbreaks in adjacent schools in the network. The additional reopening of Years 10 and 12 (14-15 and 16-17 year olds) resulted in an increase in the risk of transmission between schools comparable to reopening all primary school years (4-11 year olds). However, the majority of schools presented low risk of initiating widespread transmission through the school system. Reopening all secondary school years (11-18 year olds) resulted in large potential outbreak clusters putting up to 50% of households connected to schools at risk of infection if sustained transmission within schools was possible. ConclusionsReopening secondary school years is likely to have a greater impact on community transmission than reopening primary schools in England. Keeping transmission within schools limited is essential for reducing the risk of large outbreaks amongst school-aged children and their household members.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20134858

RESUMO

Estimation of the effective reproductive number, Rt, is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to spread. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation. Author summaryThe effective reproductive number, Rt, is a key epidemic parameter used to assess whether an epidemic is growing, shrinking or holding steady. Rt estimates can be used as a near real-time indicator of epidemic growth or to assess the effectiveness of interventions. But due to delays between infection and case observation, estimating Rt in near real-time, and correctly inferring the timing of changes in Rt is challenging. Here, we provide an overview of challenges and best practices for accurate, timely Rt estimation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...