Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276371

RESUMO

Learning underlying patterns from sensory data is crucial in the Human Activity Recognition (HAR) task to avoid poor generalization when coping with unseen data. A key solution to such an issue is representation learning, which becomes essential when input signals contain activities with similar patterns or when patterns generated by different subjects for the same activity vary. To address these issues, we seek a solution to increase generalization by learning the underlying factors of each sensor signal. We develop a novel multi-channel asymmetric auto-encoder to recreate input signals precisely and extract indicative unsupervised futures. Further, we investigate the role of various activation functions in signal reconstruction to ensure the model preserves the patterns of each activity in the output. Our main contribution is that we propose a multi-task learning model to enhance representation learning through shared layers between signal reconstruction and the HAR task to improve the robustness of the model in coping with users not included in the training phase. The proposed model learns shared features between different tasks that are indeed the underlying factors of each input signal. We validate our multi-task learning model using several publicly available HAR datasets, UCI-HAR, MHealth, PAMAP2, and USC-HAD, and an in-house alpine skiing dataset collected in the wild, where our model achieved 99%, 99%, 95%, 88%, and 92% accuracy. Our proposed method shows consistent performance and good generalization on all the datasets compared to the state of the art.


Assuntos
Aprendizagem , Esqui , Humanos , Capacidades de Enfrentamento , Atividades Humanas , Reconhecimento Psicológico
2.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299784

RESUMO

This paper presents a novel approach for counting hand-performed activities using deep learning and inertial measurement units (IMUs). The particular challenge in this task is finding the correct window size for capturing activities with different durations. Traditionally, fixed window sizes have been used, which occasionally result in incorrectly represented activities. To address this limitation, we propose segmenting the time series data into variable-length sequences using ragged tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to simplify the annotation process and reduce the time to prepare annotated data for machine learning algorithms. Thus, the model receives only partial information about the performed activity. Therefore, we propose an LSTM-based architecture, which takes into account both the ragged tensors and the weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size IMU acceleration data with relatively low computational requirements using the number of completed repetitions of hand-performed activities as a label. Hence, we present the data segmentation method we employed and the model architecture that we implemented to show the effectiveness of our approach. Our results are evaluated using the Skoda public dataset for Human activity recognition (HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of this study have applications and can be beneficial for various fields, including healthcare, sports and fitness, human-computer interaction, robotics, and the manufacturing industry.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Humanos , Algoritmos , Aprendizado de Máquina , Aceleração , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...