Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1803, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245563

RESUMO

Modern web application development involves handling enormous amounts of sensitive and consequential data. Security is, therefore, a crucial component of developing web applications. A web application's security is concerned with safeguarding the data it processes. The web application framework must have safeguards to stop and find application vulnerabilities. Among all web application attacks, SQL injection and XSS attacks are common, which may lead to severe damage to Web application data or web functionalities. Currently, there are many solutions provided by various study for SQLi and XSS attack detection, but most of the work shown have used either SQL/XSS payload-based detection or HTTP request-based detection. Few solutions available can detect SQLi and XSS attacks, but these methods provide very high false positive rates, and the accuracy of these models can further be improved. We proposed a novel approach for securing web applications from both cross-site scripting attacks and SQL injection attacks using decoding and standardization of SQL and XSS payloads and HTTP requests and trained our model using hybrid deep learning networks in this paper. The proposed hybrid DL model combines the strengths of CNNs in extracting features from input data and LSTMs in capturing temporal dependencies in sequential data. The soundness of our approach lies in the use of deep learning techniques that can identify subtle patterns in the data that traditional machine learning-based methods might miss. We have created a testbed dataset of Normal and SQLi/XSS HTTP requests and evaluated the performance of our model on this dataset. We have also trained and evaluated the proposed model on the Benchmark dataset HTTP CSIC 2010 and another SQL/XSS payload dataset. The experimental findings show that our proposed approach effectively identifies these attacks with high accuracy and a low percentage of false positives. Additionally, our model performed better than traditional machine learning-based methods. This soundness approach can be applied to various network security applications such as intrusion detection systems and web application firewalls. Using our model, we achieved an accuracy of 99.84%, 99.23% and 99.77% on the SQL-XSS Payload dataset, Testbed dataset and HTTP CSIC 2010 dataset, respectively.

2.
Sci Rep ; 13(1): 19088, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925589

RESUMO

A four-port MIMO antenna with high isolation is presented. The antenna is primarily envisioned to cover the n48 band of Frequency Range-1 (FR-1) with TDD duplex mode. The engineered antenna has electrical dimensions of 90 × 90 × 1.57 mm3. The size miniaturization of a single antenna unit is achieved through an optimized placement of slots and extended arms. The quad-antennas are then placed orthogonally to achieve antenna diversity. The antenna resonates at 3.56 GHz and 5.28 GHz having 2:1 VSWR fractional bandwidth of 1.82% and 2.12%. The proposed resonator provides 88.34% and 79.28% efficiency at lower and upper bands, respectively. The antenna is an exceptional radiator regarding MIMO diversity performance owing to high inter-element isolation. The values of envelope correlation coefficient < 0.05, channel capacity loss is nearly 0.1 bits/sec/Hz, and total active reflection coefficient is - 24.26. The full ground plane profile aids in high directivity and cross-pol isolation. The antenna exhibits a gain of 4.2 dBi and 2.8 dBi, respectively, justifying intended application requirements. There is a good coherence between simulation and experimental results. The self-decoupled antenna poses its application in 5G and WLAN Communication Applications.

3.
Micromachines (Basel) ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421107

RESUMO

In this manuscript, we have numerically investigated and experimentally verified the six-element split ring resonator and circular patch-shaped multiple input, multiple output antenna operating in the 1-25 GHz band. MIMO antennas are analyzed in terms of several physical parameters, such as reflectance, gain, directivity, VSWR, and electric field distribution. The parameters of the MIMO antenna, for instance, the envelope correlation coefficient (ECC), channel capacity loss (CCL), the total active reflection coefficient (TARC), directivity gain (DG), and mean effective gain (MEG), are also investigated for identification of a suitable range of these parameters for multichannel transmission capacity. Ultrawideband operation at 10.83 GHz is possible for the theoretically designed and practically executed antenna with the return loss and gain values of -19 dB and -28 dBi, respectively. Overall, the antenna offers minimum return loss values of -32.74 dB for the operating band of 1.92 to 9.81 GHz with a bandwidth of 6.89 GHz. The antennas are also investigated in terms of a continuous ground patch and a scattered rectangular patch. The proposed results are highly applicable for the ultrawideband operating MIMO antenna application in satellite communication with C/X/Ku/K bands.

4.
Micromachines (Basel) ; 14(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374776

RESUMO

Human tooth functionality is the most important for the human body to become fit and healthy. Due to the disease attacks in human teeth, parts may lead to different fatal diseases. A spectroscopy-based photonic crystal fiber (PCF) sensor was simulated and numerically analyzed for the detection of dental disorders in the human body. In this sensor structure, SF11 is used as the base material, gold (Au) is used as the plasmonic material, and TiO2 is used within the gold and sensing analyte layer, and the sensing medium for the analysis of the teeth parts is the aqueous solution. The maximum optical parameter values for the human tooth parts enamel, dentine, and cementum in terms of wavelength sensitivity and confinement loss were obtained as 28,948.69 nm/RIU and 0.00015 dB/m for enamel, 33,684.99 nm/RIU and 0.00028 dB/m, and 38,396.56 nm/RIU and 0.00087 dB/m, respectively. The sensor is more precisely defined by these high responses. The PCF-based sensor for tooth disorder detection is a relatively recent development. Due to its design flexibility, robustness, and wide bandwidth, its application area has been spreading out. The offered sensor can be used in the biological sensing area to identify problems with human teeth.

5.
Sci Rep ; 13(1): 7698, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169783

RESUMO

We report on the results of a numerical investigation into a phase transition material and hafnium (IV) oxide-based refractive index sensor with a wide spectral range, including both the visible and infrared regions of the electromagnetic spectrum. The sensor relies on hafnium (IV) oxide and a phase transition material (HfO2). Three layered versions of the proposed structure are studied; each configuration is built from alternating layers of HfO2, silica, Ge2Sb2Te5(GST), and silver. The three different arrangements have all been studied. The reflectance response of such multilayer structures is discussed in this manuscript for refractive indices ranging from 1 to 2.4. In addition, we have investigated how the varying heights of the materials affect the overall performance of the structure. Finally, we have supplied several formulae for resonating traces that may be used to calculate the sensing behaviour across a specific wavelength range and refractive index values. The corresponding equations are shown below. We have computed numerous equation traces throughout this inquiry to calculate the wavelength and refractive index values. Computational methods may be used to analyze the proposed structure, which might aid in creating biosensors for detecting a wide variety of biomolecules and biomarkers, such as saliva-cortisol, urine, glucose, cancerous and cancerous, and hemoglobin.


Assuntos
Técnicas Biossensoriais , Háfnio , Háfnio/química , Óxidos/química , Hemoglobinas
6.
Sci Rep ; 13(1): 7653, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169848

RESUMO

Here, we present the findings of parametric analysis into a phase transition material Ge2Sb2Te5(GST)-based, graphene-based, with a wide dynamic range in the infrared and visible electromagnetic spectrum. The suggested structure is studied in multi-layered configurations, built up with layers of GST, graphene, silicon, and silver materials. These multilayer structures' reflectance behavior has been described for refractive indices between 1.3 and 2.5. The complete design is simulated using a computational process called the finite element method. Additionally, we have investigated the impact of material heights on the structure's performance in general. We have presented several resonating tracing curves in polynomial equations to determine the sensing behavior across a specific wavelength range and refractive index values. The proposed design is also investigated at various inclined angles of incidence to ascertain its wide-angle stability. A computational study of the proposed structure can assist in the evolution of biosensors to identify a wide range of biomolecules, including malignant, hemoglobin urine, saliva-cortisol, and glucose.

7.
Micromachines (Basel) ; 14(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985019

RESUMO

In this article, a 4 × 4 miniaturized UWB-MIMO antenna with reduced isolation is designed and analyzed using a unique methodology known as characteristic mode analysis. To minimize the antenna's physical size and to improve the isolation, an arrangement of four symmetrical radiating elements is positioned orthogonally. The antenna dimension is 40 mm × 40 mm (0.42λ0× 0.42λ0) (λ0 is the wavelength at first lower frequency), which is printed on FR-4 material with a width of 1.6 mm and εr = 4.3. A square-shaped defected ground framework was placed on the ground to improve the isolation. Etching square-shaped slots on the ground plane achieved the return losses S11 < -10 dB and isolation 26 dB in the entire operating band 3.2 GHz-12.44 GHz (UWB (3.1-10.6 GHz) and X-band (8 GHz-12 GHz) spectrum and achieved good isolation bandwidth of 118.15%. The outcomes of estimated and observed values are examined for MIMO inclusion factors such as DG, ECC, CCL, and MEG. The antenna's performances, including radiation efficiency and gain, are remarkable for this antenna design. The designed antenna is successfully tested in a cutting-edge laboratory. The measured outcomes are quite similar to the modeled outcomes. This antenna is ideal for WLAN and Wi-Max applications.

8.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904721

RESUMO

Wearable devices with 5G technology are currently more ingrained in our daily lives, and they will now be a part of our bodies too. The requirement for personal health monitoring and preventive disease is increasing due to the predictable dramatic increase in the number of aging people. Technologies with 5G in wearables and healthcare can intensely reduce the cost of diagnosing and preventing diseases and saving patient lives. This paper reviewed the benefits of 5G technologies, which are implemented in healthcare and wearable devices such as patient health monitoring using 5G, continuous monitoring of chronic diseases using 5G, management of preventing infectious diseases using 5G, robotic surgery using 5G, and 5G with future of wearables. It has the potential to have a direct effect on clinical decision making. This technology could improve patient rehabilitation outside of hospitals and monitor human physical activity continuously. This paper draws the conclusion that the widespread adoption of 5G technology by healthcare systems enables sick people to access specialists who would be unavailable and receive correct care more conveniently.


Assuntos
Atenção à Saúde , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Hospitais , Tecnologia
9.
Micromachines (Basel) ; 13(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557460

RESUMO

In this manuscript, we proposed the split ring resonator loaded multiple-input multiple-output (MIMO) antenna design for the frequency range of 1 and 25 GHz. The proposed antenna is numerically investigated and fabricated to analyze the different antenna parameters. We provided statistics on a wide range of antenna parameters for five different designs, including a simple circular patch antenna, a single-split-ring antenna, and a double-split-ring antenna. Reflectance, gain, directivity, efficiency, peak gain, and electric field distribution are all analyzed for all proposed antennas. The maximum achievable bandwidth is 5.28 GHz, and the double-split-ring resonator structure achieves this with a return loss of -20.84 dB. The radiation patterns of all the antenna with different port excitation conditions are presented to identify the behavior of the antenna radiation. We found the effect of the split-ring resonators to form radiation beams in different directions. We found the maximum and minimum half-power beam widths of 75° and 2°, respectively, among the different antenna designs. It was found that the split-ring resonator geometries in patch antenna convert wide-beam antenna radiation patterns to several narrow-beam radiation patterns. We found that each antenna's bandwidth, gain, and return loss performance significantly differs from the others. Overall, the proposed results of the antenna may apply to a wide range of communication applications, including those for Wi-Fi, WiMAX, and 5G.

10.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616635

RESUMO

We proposed the numerical investigation of Hilbert-shaped multiple-input multi-output (MIMO) with multi-band operation characteristics using graphene resonator material, which operates on the band of 1 to 30 THz of the frequency range. This numerical investigation of antenna structure was carried out for the multiple antenna types, consisting of graphene as a regular patch, Hilbert order 1, and Hilbert order 2 designs. This antenna is investigated for the multiple physical parameters, such as return loss, gain, bandwidth, radiation response, Envelope Correlation Coefficient (ECC), Total Active Reflection Coefficient (TARC), Mean Effective Gain (MEG), Directivity Gain (DG), and Channel Capacity Loss (CCL). These variables are also determined to verify compatibility and the difficulties connected with communicating over a short distance. The THz MIMO antenna that was recommended offers strong isolation values in addition to an operational band. The maximum gain of ~10 dBi for the band of <15 THz and ~17 dBi for the band of the >15 THz frequency range of the proposed antenna structures. The proposed antennas are primarily operated in three bands over 1 to 30 THz of frequency. This work aims to create a brand new terahertz antenna structure capable of providing an extraordinarily wider bandwidth and high gain while keeping a typical compact antenna size suited for terahertz applications.

11.
Sci Rep ; 11(1): 7101, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782516

RESUMO

This paper reports about the outcomes from an investigation carried out on tunable biosensor for detection using infrared in the range of 1.5 µm and 1.65 µm. The biosensor is made of phase change material formed by different alloy combinations, Ge2Sb2Te5 (GST). The nature of GST allows for the material to change phase with changes in temperature, giving the tunable sensing property for biosensing application. Sensor built with amorphous GST (aGST) and crystalline GST (cGST) in different design structures were tested on different concentrations of biomolecules: hemoglobin (10 g/l, 20 g/l, 30 g/l and 40 g/l); and urine (0-1.5 mg/dL, 2.5 mg/dL, 5 mg/dL and 10 mg/dL). The tunable response observed from the tests demonstrates the potential application of the materials in the design of switching and sensing systems.


Assuntos
Ligas/química , Técnicas Biossensoriais , Hemoglobinas/análise , Urinálise/instrumentação , Desenho de Equipamento , Humanos , Limite de Detecção , Refratometria , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...