Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(7): 506-518, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766755

RESUMO

Both sleep loss and exercise regulate gene expression in skeletal muscle, yet little is known about how the interaction of these stressors affects the transcriptome. The aim of this study was to investigate the effect of nine nights of sleep restriction (SR), with repeated resistance exercise (REx) sessions, on the skeletal muscle transcriptome of young, trained females. Ten healthy females aged 18-35 yr old undertook a randomized cross-over study of nine nights of SR (5 h time in bed) and normal sleep (NS; ≥7 h time in bed) with a minimum 6-wk washout. Participants completed four REx sessions per condition (days 3, 5, 7, and 9). Muscle biopsies were collected both pre- and post-REx on days 3 and 9. Gene and protein expression were assessed by RNA sequencing and Western blot, respectively. Three or nine nights of SR had no effect on the muscle transcriptome independently of exercise. However, close to 3,000 transcripts were differentially regulated (false discovery rate < 0.05) 48 h after the completion of three resistance exercise sessions in both NS and SR conditions. Only 39% of downregulated genes and 18% of upregulated genes were common between both conditions, indicating a moderating effect of SR on the response to exercise. SR and REx interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.NEW & NOTEWORTHY This study investigated the effect of nine nights of sleep restriction, with repeated resistance exercise sessions, on the skeletal muscle transcriptome of young, trained females. Sleep restriction and resistance exercise interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.


Assuntos
Estudos Cross-Over , Músculo Esquelético , Treinamento Resistido , Privação do Sono , Transcriptoma , Humanos , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adulto Jovem , Adulto , Transcriptoma/genética , Adolescente , Privação do Sono/genética , Exercício Físico/fisiologia , Regulação da Expressão Gênica , Perfilação da Expressão Gênica/métodos
2.
PLoS Comput Biol ; 17(7): e1008984, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329294

RESUMO

Erroneous conversion of gene names into other dates and other data types has been a frustration for computational biologists for years. We hypothesized that such errors in supplementary files might diminish after a report in 2016 highlighting the extent of the problem. To assess this, we performed a scan of supplementary files published in PubMed Central from 2014 to 2020. Overall, gene name errors continued to accumulate unabated in the period after 2016. An improved scanning software we developed identified gene name errors in 30.9% (3,436/11,117) of articles with supplementary Excel gene lists; a figure significantly higher than previously estimated. This is due to gene names being converted not just to dates and floating-point numbers, but also to internal date format (five-digit numbers). These findings further reinforce that spreadsheets are ill-suited to use with large genomic data.


Assuntos
Biologia Computacional/normas , Genes/genética , Anotação de Sequência Molecular/normas , Humanos , PubMed , Software , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...