Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 121(4): 1428-1450, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785814

RESUMO

Intracortical brain-computer interfaces (BCIs) can enable individuals to control effectors, such as a computer cursor, by directly decoding the user's movement intentions from action potentials and local field potentials (LFPs) recorded within the motor cortex. However, the accuracy and complexity of effector control achieved with such "biomimetic" BCIs will depend on the degree to which the intended movements used to elicit control modulate the neural activity. In particular, channels that do not record distinguishable action potentials and only record LFP modulations may be of limited use for BCI control. In contrast, a biofeedback approach may surpass these limitations by letting the participants generate new control signals and learn strategies that improve the volitional control of signals used for effector control. Here, we show that, by using a biofeedback paradigm, three individuals with tetraplegia achieved volitional control of gamma LFPs (40-400 Hz) recorded by a single microelectrode implanted in the precentral gyrus. Control was improved over a pair of consecutive sessions up to 3 days apart. In all but one session, the channel used to achieve control lacked distinguishable action potentials. Our results indicate that biofeedback LFP-based BCIs may potentially contribute to the neural modulation necessary to obtain reliable and useful control of effectors. NEW & NOTEWORTHY Our study demonstrates that people with tetraplegia can volitionally control individual high-gamma local-field potential (LFP) channels recorded from the motor cortex, and that this control can be improved using biofeedback. Motor cortical LFP signals are thought to be both informative and stable intracortical signals and, thus, of importance for future brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Ritmo Gama , Córtex Motor/fisiopatologia , Quadriplegia/fisiopatologia , Adulto , Eletrodos Implantados/efeitos adversos , Eletrodos Implantados/normas , Retroalimentação Fisiológica , Humanos , Movimento , Quadriplegia/reabilitação
2.
Front Hum Neurosci ; 12: 450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524258

RESUMO

Planning and performing volitional movement engages widespread networks in the human brain, with motor cortex considered critical to the performance of skilled limb actions. Motor cortex is also engaged when actions are observed or imagined, but the manner in which ensembles of neurons represent these volitional states (VoSs) is unknown. Here we provide direct demonstration that observing, imagining or attempting action activates shared neural ensembles in human motor cortex. Two individuals with tetraplegia (due to brainstem stroke or amyotrophic lateral sclerosis, ALS) were verbally instructed to watch, imagine, or attempt reaching actions displayed on a computer screen. Neural activity in the precentral gyrus incorporated information about both cognitive state and movement kinematics; the three conditions presented overlapping but unique, statistically distinct activity patterns. These findings demonstrate that individual neurons in human motor cortex reflect information related to sensory inputs and VoS in addition to movement features, and are a key part of a broader network linking perception and cognition to action.

3.
J Neurophysiol ; 120(1): 343-360, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29694279

RESUMO

Restoring communication for people with locked-in syndrome remains a challenging clinical problem without a reliable solution. Recent studies have shown that people with paralysis can use brain-computer interfaces (BCIs) based on intracortical spiking activity to efficiently type messages. However, due to neuronal signal instability, most intracortical BCIs have required frequent calibration and continuous assistance of skilled engineers to maintain performance. Here, an individual with locked-in syndrome due to brain stem stroke and an individual with tetraplegia secondary to amyotrophic lateral sclerosis (ALS) used a simple communication BCI based on intracortical local field potentials (LFPs) for 76 and 138 days, respectively, without recalibration and without significant loss of performance. BCI spelling rates of 3.07 and 6.88 correct characters/minute allowed the participants to type messages and write emails. Our results indicate that people with locked-in syndrome could soon use a slow but reliable LFP-based BCI for everyday communication without ongoing intervention from a technician or caregiver. NEW & NOTEWORTHY This study demonstrates, for the first time, stable repeated use of an intracortical brain-computer interface by people with tetraplegia over up to four and a half months. The approach uses local field potentials (LFPs), signals that may be more stable than neuronal action potentials, to decode participants' commands. Throughout the several months of evaluation, the decoder remained unchanged; thus no technical interventions were required to maintain consistent brain-computer interface operation.


Assuntos
Esclerose Lateral Amiotrófica/reabilitação , Interfaces Cérebro-Computador , Comunicação , Quadriplegia/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/fisiopatologia , Tronco Encefálico/fisiopatologia , Potenciais Evocados , Humanos , Quadriplegia/fisiopatologia , Acidente Vascular Cerebral/etiologia , Reabilitação do Acidente Vascular Cerebral/instrumentação
4.
Elife ; 62017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220753

RESUMO

Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.


Assuntos
Interfaces Cérebro-Computador , Comunicação , Paralisia , Humanos , Resultado do Tratamento
5.
Sci Transl Med ; 7(313): 313ra179, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26560357

RESUMO

Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in software, enabling long periods (hours to days) of self-paced point-and-click typing by people with tetraplegia, without degradation in neural control. Three key innovations were included in our approach: tracking the statistics of the neural activity during self-timed pauses in neural control, velocity bias correction during neural control, and periodically recalibrating the decoder using data acquired during typing by mapping neural activity to movement intentions that are inferred retrospectively based on the user's self-selected targets. These methods, which can be extended to a variety of neurally controlled applications, advance the potential for intracortical BCIs to help restore independent communication and assistive device control for people with paralysis.


Assuntos
Interfaces Cérebro-Computador , Quadriplegia/fisiopatologia , Quadriplegia/reabilitação , Tecnologia Assistiva , Esclerose Lateral Amiotrófica/complicações , Calibragem , Feminino , Humanos , Masculino , Córtex Motor/fisiopatologia , Acidente Vascular Cerebral/complicações
6.
Nat Med ; 21(10): 1142-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26413781

RESUMO

Neural prostheses have the potential to improve the quality of life of individuals with paralysis by directly mapping neural activity to limb- and computer-control signals. We translated a neural prosthetic system previously developed in animal model studies for use by two individuals with amyotrophic lateral sclerosis who had intracortical microelectrode arrays placed in motor cortex. Measured more than 1 year after implant, the neural cursor-control system showed the highest published performance achieved by a person to date, more than double that of previous pilot clinical trial participants.


Assuntos
Próteses Neurais , Paralisia/terapia , Pesquisa Translacional Biomédica , Humanos , Microeletrodos , Qualidade de Vida
7.
Elife ; 4: e07436, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099302

RESUMO

The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Córtex Motor/fisiologia , Movimento , Vias Neurais/fisiologia , Neurônios/fisiologia , Humanos , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...