Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 33(1): 2250057, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495049

RESUMO

The large range of potential applications, not only for patients but also for healthy people, that could be achieved by affective brain-computer interface (aBCI) makes more latent the necessity of finding a commonly accepted protocol for real-time EEG-based emotion recognition. Based on wavelet package for spectral feature extraction, attending to the nature of the EEG signal, we have specified some of the main parameters needed for the implementation of robust positive and negative emotion classification. Twelve seconds has resulted as the most appropriate sliding window size; from that, a set of 20 target frequency-location variables have been proposed as the most relevant features that carry the emotional information. Lastly, QDA and KNN classifiers and population rating criterion for stimuli labeling have been suggested as the most suitable approaches for EEG-based emotion recognition. The proposed model reached a mean accuracy of 98% (s.d. 1.4) and 98.96% (s.d. 1.28) in a subject-dependent (SD) approach for QDA and KNN classifier, respectively. This new model represents a step forward towards real-time classification. Moreover, new insights regarding subject-independent (SI) approximation have been discussed, although the results were not conclusive.


Assuntos
Interfaces Cérebro-Computador , Emoções , Humanos , Eletroencefalografia/métodos , Algoritmos
2.
JMIR Res Protoc ; 11(8): e35442, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947423

RESUMO

BACKGROUND: More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests. OBJECTIVE: This study aimed to assess the psychometric properties, operational feasibility, and patient acceptance of 10 promising technologies that are to be used as efficacy end points to measure cognition in future clinical drug trials. METHODS: The Method for Evaluating Digital Endpoints in Alzheimer Disease study is an exploratory, cross-sectional, noninterventional study that will evaluate 10 digital technologies' ability to accurately classify participants into 4 cohorts according to the severity of cognitive impairment and dementia. Moreover, this study will assess the psychometric properties of each of the tested digital technologies, including the acceptable range to assess ceiling and floor effects, concurrent validity to correlate digital outcome measures to traditional paper-and-pencil tests in AD, reliability to compare test and retest, and responsiveness to evaluate the sensitivity to change in a mild cognitive challenge model. This study included 50 eligible male and female participants (aged between 60 and 80 years), of whom 13 (26%) were amyloid-negative, cognitively healthy participants (controls); 12 (24%) were amyloid-positive, cognitively healthy participants (presymptomatic); 13 (26%) had mild cognitive impairment (predementia); and 12 (24%) had mild AD (mild dementia). This study involved 4 in-clinic visits. During the initial visit, all participants completed all conventional paper-and-pencil assessments. During the following 3 visits, the participants underwent a series of novel digital assessments. RESULTS: Participant recruitment and data collection began in June 2020 and continued until June 2021. Hence, the data collection occurred during the COVID-19 pandemic (SARS-CoV-2 virus pandemic). Data were successfully collected from all digital technologies to evaluate statistical and operational performance and patient acceptance. This paper reports the baseline demographics and characteristics of the population studied as well as the study's progress during the pandemic. CONCLUSIONS: This study was designed to generate feasibility insights and validation data to help advance novel digital technologies in clinical drug development. The learnings from this study will help guide future methods for assessing novel digital technologies and inform clinical drug trials in early AD, aiming to enhance clinical end point strategies with digital technologies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35442.

3.
Int J Neural Syst ; 30(5): 2050021, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32268816

RESUMO

Understanding the neurophysiology of emotions, the neuronal structures involved in processing emotional information and the circuits by which they act, is key to designing applications in the field of affective neuroscience, to advance both new treatments and applications of brain-computer interactions. However, efforts have focused on developing computational models capable of emotion classification instead of on studying the neural substrates involved in the emotional process. In this context, we have carried out a study of cortical asymmetries and functional cortical connectivity based on the electroencephalographic signal of 24 subjects stimulated with videos of positive and negative emotional content to bring some light to the neurobiology behind emotional processes. Our results show opposite interhemispheric asymmetry patterns throughout the cortex for both emotional categories and specific connectivity patterns regarding each of the studied emotional categories. However, in general, the same key areas, such as the right hemisphere and more anterior cortical regions, presented higher levels of activity during the processing of both valence emotional categories. These results suggest a common neural pathway for processing positive and negative emotions, but with different activation patterns. These preliminary results are encouraging for elucidating the neuronal circuits of the emotional valence dimension.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Emoções/fisiologia , Lateralidade Funcional/fisiologia , Rede Nervosa/fisiologia , Adulto , Eletroencefalografia , Humanos , Percepção Visual/fisiologia
4.
Sensors (Basel) ; 20(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935909

RESUMO

In order to develop more precise and functional affective applications, it is necessary to achieve a balance between the psychology and the engineering applied to emotions. Signals from the central and peripheral nervous systems have been used for emotion recognition purposes, however, their operation and the relationship between them remains unknown. In this context, in the present work, we have tried to approach the study of the psychobiology of both systems in order to generate a computational model for the recognition of emotions in the dimension of valence. To this end, the electroencephalography (EEG) signal, electrocardiography (ECG) signal and skin temperature of 24 subjects have been studied. Each methodology has been evaluated individually, finding characteristic patterns of positive and negative emotions in each of them. After feature selection of each methodology, the results of the classification showed that, although the classification of emotions is possible at both central and peripheral levels, the multimodal approach did not improve the results obtained through the EEG alone. In addition, differences have been observed between cerebral and peripheral responses in the processing of emotions by separating the sample by sex; though, the differences between men and women were only notable at the peripheral nervous system level.


Assuntos
Encéfalo/fisiologia , Emoções/fisiologia , Sistema Nervoso Periférico/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Algoritmos , Eletrocardiografia/instrumentação , Eletroencefalografia/instrumentação , Feminino , Humanos , Masculino , Caracteres Sexuais , Processamento de Sinais Assistido por Computador/instrumentação , Adulto Jovem
5.
Int J Neural Syst ; 29(2): 1850044, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30415631

RESUMO

The development of suitable EEG-based emotion recognition systems has become a main target in the last decades for Brain Computer Interface applications (BCI). However, there are scarce algorithms and procedures for real-time classification of emotions. The present study aims to investigate the feasibility of real-time emotion recognition implementation by the selection of parameters such as the appropriate time window segmentation and target bandwidths and cortical regions. We recorded the EEG-neural activity of 24 participants while they were looking and listening to an audiovisual database composed of positive and negative emotional video clips. We tested 12 different temporal window sizes, 6 ranges of frequency bands and 60 electrodes located along the entire scalp. Our results showed a correct classification of 86.96% for positive stimuli. The correct classification for negative stimuli was a little bit less (80.88%). The best time window size, from the tested 1 s to 12 s segments, was 12 s. Although more studies are still needed, these preliminary results provide a reliable way to develop accurate EEG-based emotion classification.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Emoções/fisiologia , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Percepção Visual/fisiologia , Adulto , Humanos , Fatores de Tempo
6.
J Environ Manage ; 200: 484-489, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622651

RESUMO

Much is currently being studied on the negative visual impact associated to the installation of large wind turbines or photovoltaic farms. However, methodologies for quantitatively assessing landscape impact are scarce. In this work we used electroencephalographic (EEG) recordings to investigate the brain activity of 14 human volunteers when looking at the same landscapes with and without wind turbines, solar panels and nuclear power plants. Our results showed no significant differences for landscapes with solar power systems or without them, and the same happened for wind turbines, what was in agreement with their subjective scores. However, there were clear and significant differences when looking at landscapes with and without nuclear power plants. These differences were more pronounced around a time window of 376-407 msec and showed a clear right lateralization for the pictures containing nuclear power plants. Although more studies are still needed, these results suggest that EEG recordings can be a useful procedure for measuring visual impact.


Assuntos
Energia Renovável , Percepção Visual , Vento , Eletroencefalografia , Humanos , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...