Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 293: 144-158, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28412220

RESUMO

Peripheral inflammation induces sensitization of nociceptive spinal cord neurons. Both spinal tumor necrosis factor (TNF) and neuronal membrane insertion of Ca2+ permeable AMPA receptor (AMPAr) contribute to spinal sensitization and resultant pain behavior, molecular mechanisms connecting these two events have not been studied in detail. Intrathecal (i.t.) injection of TNF-blockers attenuated paw carrageenan-induced mechanical and thermal hypersensitivity. Levels of GluA1 and GluA4 from dorsal spinal membrane fractions increased in carrageenan-injected rats compared to controls. In the same tissue, GluA2 levels were not altered. Inflammation-induced increases in membrane GluA1 were prevented by i.t. pre-treatment with antagonists to TNF, PI3K, PKA and NMDA. Interestingly, administration of TNF or PI3K inhibitors followed by carrageenan caused a marked reduction in plasma membrane GluA2 levels, despite the fact that membrane GluA2 levels were stable following inhibitor administration in the absence of carrageenan. TNF pre-incubation induced increased numbers of Co2+ labeled dorsal horn neurons, indicating more neurons with Ca2+ permeable AMPAr. In parallel to Western blot results, this increase was blocked by antagonism of PI3K and PKA. In addition, spinal slices from GluA1 transgenic mice, which had a single alanine replacement at GluA1 ser 845 or ser 831 that prevented phosphorylation, were resistant to TNF-induced increases in Co2+ labeling. However, behavioral responses following intraplantar carrageenan and formalin in the mutant mice were no different from littermate controls, suggesting a more complex regulation of nociception. Co-localization of GluA1, GluA2 and GluA4 with synaptophysin on identified spinoparabrachial neurons and their relative ratios were used to assess inflammation-induced trafficking of AMPAr to synapses. Inflammation induced an increase in synaptic GluA1, but not GluA2. Although total GluA4 also increased with inflammation, co-localization of GluA4 with synaptophysin, fell short of significance. Taken together these data suggest that peripheral inflammation induces a PI3K and PKA dependent TNFR1 activated pathway that culminates with trafficking of calcium permeable AMPAr into synapses of nociceptive dorsal horn projection neurons.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células do Corno Posterior/metabolismo , Radiculopatia/patologia , Receptores de AMPA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Cálcio/metabolismo , Carragenina/toxicidade , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Etanercepte/uso terapêutico , Feminino , Masculino , Camundongos , Células do Corno Posterior/patologia , Células do Corno Posterior/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Radiculopatia/induzido quimicamente , Radiculopatia/tratamento farmacológico , Ratos Sprague-Dawley , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Sinaptofisina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Exp Neurol ; 283(Pt A): 276-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349406

RESUMO

Alterations in the neuro-immune balance play a major role in the pathophysiology of chronic neuropathic pain. MicroRNAs (miRNA) can regulate both immune and neuronal processes and may function as master switches in chronic pain development and maintenance. We set out to analyze the role of miR-132-3p, first in patients with peripheral neuropathies and second in an animal model of neuropathic pain. We initially determined miR-132-3p expression by measuring its levels in white blood cells (WBC) of 30 patients and 30 healthy controls and next in sural nerve biopsies of 81 patients with painful or painless inflammatory or non-inflammatory neuropathies based on clinical diagnosis. We found a 2.6 fold increase in miR-132-3p expression in WBC of neuropathy patients compared to healthy controls (p<0.001). MiR-132-3p expression was also slightly up-regulated in sural nerve biopsies from neuropathy patients suffering from neuropathic pain compared to those without pain (1.2 fold; p<0.001). These promising findings were investigated further in an animal model of neuropathic pain, the spared nerve injury model (SNI). For this purpose miR-132-3p expression levels were measured in dorsal root ganglia and spinal cord of rats. Subsequently, miR-132-3p expression was pharmacologically modulated with miRNA antagonists or mimetics, and evoked pain and pain aversion were assessed. Spinal miR-132-3p levels were highest 10days after SNI, a time when persistent allodynia was established (p<0.05). Spinal administration of miR-132-3p antagonists via intrathecal (i.t.) catheters dose dependently reversed mechanical allodyina (p<0.001) and eliminated pain behavior in the place escape avoidance paradigm (p<0.001). Intrathecal administration of miR-132-3p mimetic dose-dependently induced pain behavior in naïve rats (p<0.001). Taken together these results indicate a pro-nociceptive effect of miR-132-3p in chronic neuropathic pain.


Assuntos
Leucócitos/metabolismo , MicroRNAs/metabolismo , Neuralgia/sangue , Neuralgia/fisiopatologia , Regulação para Cima/fisiologia , Fator 3 Ativador da Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aprendizagem da Esquiva/fisiologia , Doença Crônica , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Masculino , MicroRNAs/química , MicroRNAs/genética , Pessoa de Meia-Idade , Neuralgia/patologia , Oligonucleotídeos/farmacologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , RNA Mensageiro/metabolismo , Ratos , Receptores de AMPA/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Neuroscience ; 162(2): 462-71, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19427893

RESUMO

Spinal p38 mitogen activated (MAP) kinase plays a key role in chronic pain behavior. However, clinical development of p38 inhibitors has been hindered by significant toxicity. To evaluate alternative strategies of p38 regulation, we determined if known upstream activators of p38 (mitogen activated kinase kinase [MKK] 3 and MKK6), are involved in development and maintenance of pain and spinal p38 phosphorylation. Acute pain behaviors were not altered in MKK3 or MKK6 deficient mice. The phase 2 formalin response was delayed in MKK3-/- mice, but unchanged in magnitude, while the response remained normal in MKK6-/- mice. More striking, late formalin allodynia (3-18 days post-injection) was prominent in wild type and MKK6-/- mice, but was delayed for several days in MKK3-/- mice. In wild type, but not MKK3-/- mice, intraplantar formalin elicited increases in ipsilateral spinal MKK3/6 phosphorylation acutely and again at 9 days postinjection. Phosphorylation of MKK3/6 correlated with phase 2 formalin behavior. Wild type (WT) and MKK3-/- mice both expressed increases in spinal phosphorylated p38, however in WT mice this response began several days earlier, and was of higher magnitude and duration than in MKK3-/- mice. This phosphorylation correlated with the late allodynia. Phosphorylated MKK3/6 was detected only in astrocytes, given that phosphorylated p38 (P-p38) is usually not seen in astrocytes this argues for astrocytic release of soluble mediators that affect p38 phosphorylation in microglia. Taking these data together, MKK3, but not MKK6, is necessary for normal development of chronic pain behavior and phosphorylation of spinal p38.


Assuntos
MAP Quinase Quinase 3/fisiologia , Dor/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença Aguda , Animais , Astrócitos/enzimologia , Doença Crônica , Ativação Enzimática , Formaldeído , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/fisiologia , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Medição da Dor , Fosforilação , Estimulação Física , Medula Espinal/metabolismo
4.
Neuroscience ; 157(2): 414-23, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18838115

RESUMO

Recent studies suggest that tumor necrosis factor-alpha (TNF) sensitizes primary afferent neurons, and thus facilitates neuropathic pain. Here, we separately examined the roles of tumor necrosis factor receptor (TNFR) 1 and 2 by parallel in vivo and in vitro paradigms using proteins that selectively activate TNFR1 or TNFR2 (R1 and R2). In vivo, intrathecally injected R1, but not R2 slightly reduced mechanical and thermal withdrawal thresholds in rats, whereas co-injection resulted in robust, at least additive pain-associated behavior. In vitro, the electrophysiological responses of dorsal root ganglia (DRG) from rats with spinal nerve ligation were measured utilizing single-fiber recordings of teased dorsal root filaments. In naïve DRG, only R1 (10-1000 pg/ml) induced firing in Ass- and Adelta-fibers, whereas R2 had no effect. In injured DRG, both R1 and R2 at significantly lower concentrations (1 pg/ml) increased discharge rates of Adelta-fibers. Most interesting, in adjacent uninjured DRG, R2 and not R1, increased ectopic activity in both Ass- and Adelta-fibers. We conclude that TNFR1 may be predominantly involved in the excitation of sensory neurons and induction of pain behavior in the absence of nerve injury, TNFR2 may contribute in the presence of TNFR1 activation. Importantly, the effects of individually applied R1 and R2 on injured and adjacent uninjured fibers imply that the role of TNFR2 in the excitation of sensory neurons increases after injury.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/administração & dosagem , Células Receptoras Sensoriais/efeitos dos fármacos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Humanos , Hiperalgesia/fisiopatologia , Técnicas In Vitro , Ligadura/métodos , Masculino , Mutação/genética , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Medição da Dor , Estimulação Física , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/classificação , Receptores do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/farmacologia , Medula Espinal/cirurgia , Fatores de Tempo
5.
Schmerz ; 20(3): 245-53, 2006 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-16763860

RESUMO

Secondary mechanical hyperalgesia has been demonstrated in postoperative patients indicating that central sensitization occurs after surgery. However, the underlying mechanisms are unknown. Here, we studied the role of spinal AMPA/kainate receptors for pain behaviors indicating secondary hyperalgesia caused by gastrocnemius incision in the rat. These were reduced by NBQX, a selective antagonist of AMPA/kainate receptors. However, administration of NMDA receptor antagonists caused no or only a modest decrease in behaviors for secondary hyperalgesia but produced associated motor deficits and supraspinal side effects. We further determined that only secondary mechanical hyperalgesia was reversed by JSTX, a selective antagonist of calcium-permeable AMPA receptor; primary mechanical hyperalgesia and guarding behavior were unchanged. These findings indicate that JSTX influenced a spinal amplification process that leads to secondary hyperalgesia but does not contribute to primary hyperalgesia and guarding after incision. This amplification process likely requires Ca(2) influx through spinal AMPA/KA (but not NMDA) receptors. Behaviors for secondary mechanical hyperalgesia after incision can be inhibited without affecting primary mechanical hyperalgesia and guarding. Mechanisms for central sensitization causing secondary hyperalgesia in postoperative patients may therefore be separated from spontaneous pain and hyperalgesia that arises adjacent to the area of the incision.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hiperalgesia/fisiopatologia , Mecanorreceptores/efeitos dos fármacos , Mecanorreceptores/fisiopatologia , Músculo Esquelético/inervação , Músculo Esquelético/cirurgia , Dor Pós-Operatória/fisiopatologia , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Animais , Cálcio/metabolismo , Masculino , Neurotoxinas/farmacologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Venenos de Aranha/farmacologia
6.
Neurosci Lett ; 347(3): 179-82, 2003 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12875915

RESUMO

Evidence indicates a role for tumor necrosis factor-alpha (TNF) in neuropathic pain. We correlated pain behavior in response to mechanical stimulation with immunoreactivity for TNF receptor (TNFR) 1 and 2 at 6, 24, 76 and 120 h following L5 and L6 spinal nerve ligation (SNL). Allodynia began in both L4 and L5 dermatomes within 6 h following SNL, peaking by 24 h. In L5 (injured) dorsal root ganglia (DRG), TNFR1 and TNFR2 levels displayed a bimodal increase, peaking at 6 and 120 h after SNL. In L4 (uninjured) DRG, TNFR1 and TNFR2 immunoreactivity peaked at 24 h returning to basal levels by 120 h. TNFR upregulation in injured and adjacent uninjured DRG neurons may be essential for mediating enhanced TNF effects and thus contribute to the development of pain-related behavior.


Assuntos
Antígenos CD/biossíntese , Gânglios Espinais/metabolismo , Receptores do Fator de Necrose Tumoral/biossíntese , Nervos Espinhais/patologia , Regulação para Cima , Animais , Constrição Patológica , Modelos Animais de Doenças , Imuno-Histoquímica , Ligadura , Masculino , Dor/etiologia , Dor/metabolismo , Medição da Dor , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Tato
7.
Brain Res ; 930(1-2): 67-74, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11879797

RESUMO

Anti-GD(2) antibodies have been shown to be effective for immunotherapy of neuroblastoma and other GD(2) enriched malignancies. Infusion of anti-GD(2) antibodies frequently causes spontaneous pain and allodynia for the duration of the immunotherapy and occasionally longer lasting neuropathic pain. Bolus intravenous injection of anti-GD(2) in rats initiates mechanical allodynia as measured by withdrawal threshold of the hindpaws. In this study, thermal thresholds were measured prior to and for up to 6 h following systemic anti-GD(2) administration in adult rats. In addition, both thermal and mechanical thresholds were tested following intrathecal administration of anti-GD(2) and IgG(2a). Murine anti-GD(2) elicited mechanical allodynia when administered into either the vasculature or the intrathecal space. Effective systemic doses were 1--3 mg/kg as previously shown. Intrathecally, optimal doses ranged from 0.01 to 0.1 ng; a higher dose was ineffective. Thermal hyperalgesia was not observed via either route of administration. Intrathecal pretreatment 48--72 h prior to the experiment with capsaicin at doses sufficient to cause a 50% depletion of dorsal horn CGRP, caused a total blockade of the mechanical allodynia indicating an involvement of peptidergic fine afferent fibers. It is likely that the antibody reacts with an antigen on peripheral nerve and/or myelin to initiate its effect. The lack of observed thermal hyperalgesia is surprising especially in light of the capsaicin-associated blockade, however, it is consistent with several other immune system related models of pain.


Assuntos
Anticorpos Bloqueadores/farmacologia , Capsaicina/farmacologia , Gangliosídeos/antagonistas & inibidores , Hiperalgesia/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Dor/fisiopatologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Monoclonais/farmacologia , Comportamento Animal/efeitos dos fármacos , Gangliosídeos/imunologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/psicologia , Infusões Intravenosas , Injeções Espinhais , Masculino , Nociceptores/efeitos dos fármacos , Dor/induzido quimicamente , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Sprague-Dawley
8.
Anesthesiology ; 95(4): 965-73, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11605940

RESUMO

BACKGROUND: Ca2+-permeable non-N-methyl-D-aspartate receptors are found in the spinal dorsal horn and represent a presumptive target for glutamatergic transmission in nociceptive processing. This study characterized the analgesic profile associated with the blockade of these spinal receptors by intrathecally delivered agents known to act at these receptors, the spider venom Joro toxin (JST) and philanthotoxin. METHODS: Philanthotoxin (0.5, 2.5, or 5 microg) or JST (5 microg) was given spinally before thermal injury to the paw. JST (5 microg) was also given 10 min before subcutaneous formalin injection, after intraplantar administration of carrageenan, and to rats that were allodynic due to tight ligation of spinal nerves. Lower doses of JST (0.25 and 1.0 microg) were given before formalin injection and testing of thermal latencies. Thermal latencies were measured using a Hargreaves box, mechanical thresholds using von Frey hairs, and formalin response by means of counting flinches. RESULTS: Both agents blocked thermal injury-induced mechanical allodynia. JST (5 microg) given 1 h after carrageenan blocked induction of thermal hyperalgesia and mechanical allodynia. JST (5 microg) had no effect in the formalin test, on allodynia after spinal nerve ligation, or when given 3 h after carrageenan. The lowest dose (0.25 microg JST) at pretreatment intervals of 60-120 min resulted in modest hypoalgesia during phase 1 formalin and thermal testing. CONCLUSIONS: The behavioral effect of intrathecal Ca2+-permeable non-N-methyl-D-aspartate antagonists indicates an important role for this spinal receptor in regulating hyperalgesic states induced by tissue injury and inflammation and reveals an action that is distinct from those observed with other glutamate receptor antagonists.


Assuntos
Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/toxicidade , Medição da Dor/efeitos dos fármacos , Receptores de Glutamato/efeitos dos fármacos , Animais , Queimaduras/complicações , Carragenina , Formaldeído , Hiperalgesia/prevenção & controle , Interneurônios/efeitos dos fármacos , Ligadura , Masculino , Neurotoxinas/toxicidade , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Venenos de Aranha/toxicidade , Nervos Espinhais/patologia
9.
J Neurosci ; 21(6): 1868-75, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11245671

RESUMO

Peripheral nerve injury can lead to a persistent neuropathic pain state in which innocuous tactile stimulation elicits pain behavior (tactile allodynia). Spinal administration of the anticonvulsant gabapentin suppresses allodynia by an unknown mechanism. In vitro studies indicate that gabapentin binds to the alpha(2)delta-1 (hereafter referred to as alpha(2)delta) subunit of voltage-gated calcium channels. We hypothesized that nerve injury may result in altered alpha(2)delta subunit expression in spinal cord and dorsal root ganglia (DRGs) and that this change may play a role in neuropathic pain processing. Using a rat neuropathic pain model in which gabapentin-sensitive tactile allodynia develops after tight ligation of the left fifth and sixth lumbar spinal nerves, we found a >17-fold, time-dependent increase in alpha(2)delta subunit expression in DRGs ipsilateral to the nerve injury. Marked alpha(2)delta subunit upregulation was also evident in rats with unilateral sciatic nerve crush, but not dorsal rhizotomy, indicating a peripheral origin of the expression regulation. The increased alpha(2)delta subunit expression preceded the allodynia onset and diminished in rats recovering from tactile allodynia. RNase protection experiments indicated that the DRG alpha(2)delta regulation was at the mRNA level. In contrast, calcium channel alpha(1B) and beta(3) subunit expression was not co-upregulated with the alpha(2)delta subunit after nerve injury. These data suggest that DRG alpha(2)delta regulation may play an unique role in neuroplasticity after peripheral nerve injury that may contribute to allodynia development.


Assuntos
Canais de Cálcio/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Subunidades Proteicas , Nervos Espinhais/lesões , Animais , Axônios/metabolismo , Comportamento Animal , Canais de Cálcio/genética , Modelos Animais de Doenças , Gânglios Espinais/fisiopatologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Ligadura , Masculino , Compressão Nervosa , Neuralgia/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Medição da Dor , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Rizotomia , Nervo Isquiático/fisiologia , Nervo Isquiático/cirurgia , Nervos Espinhais/metabolismo , Nervos Espinhais/fisiopatologia , Regulação para Cima
10.
Prostaglandins Other Lipid Mediat ; 62(4): 335-42, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11060897

RESUMO

Isoprostane E2 (8-iso PGE) and isoprostane F2 alpha (8-iso PGF) contribute to numerous vascular, proinflammatory, and nociceptive functions. The underlying mechanisms for many of their actions are still under investigation. We examined the ability of isoprostanes to promote cutaneous inflammation using the Evan's blue dye method. Our data show that 4 micrograms subcutaneously (s.c.) injected 8-iso PGE or 8-iso PGF induced plasma extravasation in glabrous rat skin. Dye extravasation was also elicited in hairy skin after injections of 8-iso PGE, but not after 8-iso PGF. Isoprostane-evoked dye extravasation can be reduced by pretreatment with both the S+ and R- isomers of the cyclooxygenase (COX)-inhibitor ibuprofen (30 mg/kg intraperitoneally), indicating perhaps a nonspecific inhibition; pretreatment with ketorolac (1 and 10 mg/kg i.v.) was without effect. Unlike isoprostane-induced cutaneous nociceptor sensitization, which is blocked in a stereospecific and dose-dependent manner by COX-inhibitors, the effect of these drugs on isoprostane-induced cutaneous plasma extravasation is less consistent. We conclude that at least a large component of the isoprostane effect on cutaneous plasma extravasation is COX-independent.


Assuntos
Dinoprosta/administração & dosagem , Dinoprostona/análogos & derivados , Dinoprostona/administração & dosagem , Extravasamento de Materiais Terapêuticos e Diagnósticos/etiologia , Isoprostanos , Animais , Inibidores de Ciclo-Oxigenase/administração & dosagem , Dinoprosta/análogos & derivados , Azul Evans , Extravasamento de Materiais Terapêuticos e Diagnósticos/prevenção & controle , F2-Isoprostanos , Ibuprofeno/administração & dosagem , Inflamação/induzido quimicamente , Injeções Subcutâneas , Cetorolaco/administração & dosagem , Masculino , Ratos
11.
J Peripher Nerv Syst ; 5(2): 96-100, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10905468

RESUMO

Tumor necrosis factor alpha (TNF) injected into the sciatic nerve and neutralizing antibodies to its receptor injected around the nerve are respectively associated with inducing and blocking pain behavior beginning 1 to 3 days post-injection. This study examined the acute effects of TNF applied around the nerve trunk on the mechanical threshold (determined with von Frey hairs) and withdrawal latency to radiant heat. TNF (0.9 and 7.7 ng in 90 microL) injected onto the nerve via an indwelling catheter elicited a decrease in mechanical threshold. Following the low dose of TNF, no change in thermal latency was observed; after the 7.7 ng dose, thermal thresholds decreased and returned to baseline multiple times within the 3-hour observation period. Identical doses of TNF injected near, but not on the nerve, 90 ng of TNF injected on the nerve, and vehicle were without effect on either modality. These data indicate that effects of acutely administered TNF to the nerve trunk are capable of producing modality specific pain behavior. These changes may represent a first step in TNF-induced neuropathic pain.


Assuntos
Hiperalgesia/induzido quimicamente , Fator de Necrose Tumoral alfa/administração & dosagem , Doença Aguda , Animais , Relação Dose-Resposta a Droga , Temperatura Alta , Hiperalgesia/fisiopatologia , Injeções , Masculino , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Nervo Isquiático/fisiologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
12.
Brain Res ; 867(1-2): 255-8, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10837823

RESUMO

Isoprostane E(2) (8-iso-PGE) and F(2alpha) (8-iso-PGF) sensitize nociceptors and capsaicin-sensitive DRG neurons. In this study we investigated the cyclooxygenase-dependence of isoprostane-induced C-nociceptor sensitization. Systemic pretreatment of rats with ketorolac (1 and 10 mg/kg) abolished 8-iso-PGF sensitization and reduced the effects of 8-iso-PGE. Ibuprofen (30 mg/kg) blocked all sensitizing effects. These data suggest that some algesic properties of isoprostanes are mediated via prostanoid synthesis.


Assuntos
Dinoprostona/análogos & derivados , Isoprostanos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Vasoconstritores/farmacologia , Animais , Dinoprosta/análogos & derivados , Dinoprosta/farmacologia , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , F2-Isoprostanos , Gânglios Espinais/citologia , Hiperalgesia/induzido quimicamente , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley
13.
J Pharmacol Exp Ther ; 293(3): 912-20, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10869392

RESUMO

Isoprostanes are a novel class of eicosanoids primarily formed by peroxidation of arachidonic acid. Because of their potential as inflammatory and/or hyperalgesic agents whose formation is largely independent of cyclooxygenases, we examined whether 8-iso prostaglandin E(2) (8-iso PGE(2)) or 8-iso prostaglandin F(2alpha) (8-iso PGF(2alpha)) reduces mechanical and thermal withdrawal threshold in rats, and whether they sensitize rat sensory neurons. Injection of 1 microg of 8-iso PGE(2) (in 2.5 microl) into the hindpaw of rats significantly reduced mechanical and thermal withdrawal thresholds, whereas 1 microg of 8-iso PGF(2alpha) elicited a transient decrease in only the mechanical withdrawal threshold. Both isoprostanes enhanced the firing of C-nociceptors in a concentration-dependent manner when injected into peripheral receptive fields. Exposing sensory neurons grown in culture to 1 microM 8-iso PGE(2) or 8-iso PGF(2alpha) augmented the number of action potentials elicited by a ramp of depolarizing current. In contrast, 8-iso PGE(2) but not 8-iso PGF(2alpha) enhanced the release of substance P- and calcitonin gene-related peptide-like immunoreactivity from isolated sensory neurons. Ten micromolar 8-iso PGE(2) stimulated peptide release directly, whereas treatment with 1 microM 8-iso PGE(2) augmented the release evoked by either bradykinin or capsaicin. Pretreating neuronal cultures with the nonsteroidal anti-inflammatory drug ketorolac did not alter the sensitizing action of 8-iso PGE(2) on peptide release, suggesting that this action of the isoprostane was not secondary to the production of prostaglandins via the cyclooxygenase pathway. These data support the notion that isoprostanes are an important class of inflammatory mediators that augment nociception.


Assuntos
Dinoprosta/análogos & derivados , Dinoprostona/análogos & derivados , Isoprostanos , Neurônios Aferentes/efeitos dos fármacos , Dor/etiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , AMP Cíclico/fisiologia , Dinoprosta/farmacologia , Dinoprostona/farmacologia , F2-Isoprostanos , Feminino , Masculino , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Neurônios Aferentes/fisiologia , Prostaglandinas/biossíntese , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Substância P/metabolismo
14.
Pain ; 85(1-2): 145-51, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10692613

RESUMO

Tumor necrosis factor alpha (TNF) is a potent pro-inflammatory cytokine that produces pain and hyperalgesia following injection. Its algesic effects are due to sensitizing actions on nociceptive primary afferents and to the upregulation of other pro-inflammatory and algesic proteins. In anesthetized rats, we investigated the effect of subcutaneously injected TNF on background activity and mechanical sensitivity of C nociceptors of the sural nerve, as well as its effects on cutaneous plasma extravasation. TNF sensitized C nociceptors dose-dependently; the optimal dose (5 ng) lowered threshold in 66.7% of the tested fibers. This sensitization occurred within 30 min and could last for 2 or more hours. Injected TNF had no effect on Abeta mechanoreceptive fibers. In addition, TNF evoked ongoing activity in 14% of C nociceptors and caused significant and dose-related increases in vascular permeability in glabrous skin. Our data suggest that TNF released during disease or after tissue injury participates in the generation of hyperalgesia and inflammation.


Assuntos
Inflamação/induzido quimicamente , Dor/induzido quimicamente , Fator de Necrose Tumoral alfa/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inflamação/psicologia , Injeções Subcutâneas , Masculino , Mecanorreceptores/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Dor/psicologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/administração & dosagem
15.
Pain Med ; 1(4): 296-302, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15101875

RESUMO

Immune responses are an input source of modulation/modification for the peripheral nervous system that can result in pain and/or peripheral neuropathy. The resulting pain can be a significant debilitating component of many diseases as well as an untoward side effect of treatment. This paper briefly describes three sources of peripheral neuropathy generated in the presence of, or associated with, an immune response. Two are classified as autoimmune diseases. The body, in an attempt to rid itself of a tumor or an invading bacterial infection or virus, attacks its nervous system due to molecular mimicry; this results in, respectively, paraneoplastic neuropathy or inflammatory polyneuropathy. The third neuropathic pain syndrome is iatrogenic and occurs after administration of an antibody to GD2 ganglioside as an immunotherapy for neuroblastoma. This paper will attempt to point out some common elements in their neuropathologies and mechanisms.

16.
Surg Clin North Am ; 79(2): 213-29, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10352652

RESUMO

The systems activated by tissue-injuring stimuli are complex. The nociceptive primary afferents have little spontaneous activity under normal conditions; however, after tissue injury, they display longlasting, ongoing activity. This results, in part, because the injury elicits the release of active factors that sensitize or excite the peripheral nerve terminal. A threshold that is lowered to the extent that body temperature and the pressure of edema are adequate stimuli results in spontaneous pain. This phenomenon is mediated by a variety of blood-borne active factors released during plasma extravasation, by agents released from local inflammatory cells, and by neurotransmitters released from the peripheral terminals of the primary afferent fibers themselves. Well-defined projections into the dorsal horn convey the "pain message" to at least two well-defined populations of neurons: those that are nociceptive specific and those that display an intensity-linked discharge over a range of stimuli from innocuous to noxious. Convergence from various fiber types, modalities, and end organs permits the encoding of afferent traffic with respect to intensity and location. The convergence of axons from somatic and visceral structures reflects the mechanism for the so-called "referred pain state." Most importantly, these dorsal horn systems have a dynamic component in addition to the hard-wiring; their output can be regulated both up and down. The up-regulation provides the basis for much of the facilitated processing that is believed to account for a significant percentage of the postinjury pain state. The facilitated state has a unique pharmacology, with the underlying mechanisms reflecting a cascade of actions that starts with the NMDA receptor and proceeds through the spinal release of intermediaries, such as prostaglandins and nitric oxide. Conversely, the ability to down-regulate the dorsal horn stimulus response function accounts for the powerful control exerted by a wide variety of diverse factors, including the spinal delivery of opioid and nonopioid analgesics and the "endogenous analgesia system." These linkages reflect the complexity of the encoding mechanisms that transduce the tissue injury into the behavioral sequela known as pain. This article also emphasizes that, although considerable progress has been made in the past decade, the current pace of research promises greater insights.


Assuntos
Neurotransmissores/farmacologia , Nociceptores/fisiologia , Dor/fisiopatologia , Vias Aferentes/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Humanos , Limiar da Dor , Dor Pós-Operatória/fisiopatologia , Medula Espinal/citologia , Medula Espinal/fisiologia
17.
Neuroreport ; 10(17): 3523-6, 1999 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-10619637

RESUMO

Mild thermal injury to the hindpaw induces tactile allodynia distal to the injury. The allodynia is blocked by non-NMDA, but not NMDA, antagonists. The calcium permeable subtype of non-NMDA receptors is blocked by Joro spider toxin (JSTX). We injected JSTX or saline intrathecally followed after 5 min, 6 or 24 h by thermal injury. Rats receiving saline had decreased mechanical thresholds. Rats receiving 3 microg JSTX 5 min or 6 h prior to burn showed no allodynia. JSTX had no prominent side effects at doses between 1 and 5 microg. JSTX (5 microg) had no effect on thermal threshold. These results are consistent with the hypothesis that spinal mechanisms leading to tactile allodynia in this injury model act via a calcium permeable AMPA linkage.


Assuntos
Cálcio/metabolismo , Limiar da Dor/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Venenos de Aranha/farmacologia , Tato/efeitos dos fármacos , Animais , Queimaduras/fisiopatologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cabelo , Membro Posterior , Temperatura Alta , Masculino , Dor/tratamento farmacológico , Dor/fisiopatologia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Respiração/efeitos dos fármacos , Fatores de Tempo , Tato/fisiologia
18.
Brain Res ; 810(1-2): 93-9, 1998 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-9813259

RESUMO

Gabapentin (GBP) and S(+)-3-isobutyl-gamma-aminobutyric acid (IBG) are anticonvulsant agents which are effective against many clinical and experimental neuropathic pain states. We examined the efficacy of these agents in a new rat model of secondary mechanical hyperalgesia generated by a mild thermal injury. Under brief halothane anesthesia, an injury was induced by applying one heel to a hot surface (52.5 degreesC) for 45 s. GBP, IBG or saline was injected i.p. just prior to the injury. Mean mechanical withdrawal threshold (MWT) was determined using von Frey hairs before and at 30 min intervals for 3 h following the injury. MWT outside the injury area decreased post-injury (secondary hyperalgesia, allodynia), but primary (site of injury) mechanical hyperalgesia was not observed. Secondary hyperalgesia exhibited a tendency toward recovery over time. Time to onset of the anti-allodynic effect of GBP was 30-60 min. The minimum effective GBP dose was 100 mg/kg; 300 mg/kg GBP totally inhibited the drop in MWT, but was accompanied by pronounced sedation. Anti-allodynic effects of IBG were apparent at the first post-injury measure of MWT (30 min). Thirty milligrams per kilogram was the minimum effective dose; 100 mg/kg IBG totally blocked the allodynia with minimal side effects. Our findings demonstrate a dose-dependent blockade of the mechanical sensitivity caused by a mild thermal injury by both GBP and IBG. Results indicate that IBG is more effective than GBP in this model at doses which do not cause sedation. These observations support the suggested use of these or related gamma-amino acid analogues as an effective treatment for post-operative pain.


Assuntos
Acetatos/farmacologia , Aminas , Anticonvulsivantes/farmacologia , Ácidos Cicloexanocarboxílicos , Hiperalgesia/prevenção & controle , Ácido gama-Aminobutírico/análogos & derivados , Acetatos/administração & dosagem , Animais , Anticonvulsivantes/administração & dosagem , Queimaduras/complicações , Relação Dose-Resposta a Droga , Gabapentina , Hiperalgesia/etiologia , Injeções Intraperitoneais , Masculino , Limiar da Dor/efeitos dos fármacos , Pregabalina , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/administração & dosagem , Ácido gama-Aminobutírico/farmacologia
19.
Am J Hum Genet ; 63(5): 1363-75, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9792863

RESUMO

Familial porphyria cutanea tarda (f-PCT) results from the half-normal activity of uroporphyrinogen decarboxylase (URO-D). Heterozygotes for this autosomal dominant trait are predisposed to photosensitive cutaneous lesions by various ecogenic factors, including iron overload and alcohol abuse. The 3.6-kb URO-D gene was completely sequenced, and a long-range PCR method was developed to amplify the entire gene for mutation analysis. Four missense mutations (M165R, L195F, N304K, and R332H), a microinsertion (g10insA), a deletion (g645Delta1053), and a novel exonic splicing defect (E314E) were identified. Expression of the L195F, N304K, and R332H polypeptides revealed significant residual activity, whereas reverse transcription-PCR and sequencing demonstrated that the E314E lesion caused abnormal splicing and exon 9 skipping. Haplotyping indicated that three of the four families with the g10insA mutation were unrelated, indicating that these microinsertions resulted from independent mutational events. Screening of nine f-PCT probands revealed that 44% were heterozygous or homozygous for the common hemochromatosis mutations, which suggests that iron overload may predispose to clinical expression. However, there was no clear correlation between f-PCT disease severity and the URO-D and/or hemochromatosis genotypes. These studies doubled the number of known f-PCT mutations, demonstrated that marked genetic heterogeneity underlies f-PCT, and permitted presymptomatic molecular diagnosis and counseling in these families to enable family members to avoid disease-precipitating factors.


Assuntos
Hemocromatose/genética , Mutação , Porfiria Cutânea Tardia/enzimologia , Porfiria Cutânea Tardia/genética , Uroporfirinogênio Descarboxilase/genética , Alelos , Substituição de Aminoácidos , Argentina , Sequência de Bases , Elementos de DNA Transponíveis , Estabilidade Enzimática , Éxons , Genes Dominantes , Triagem de Portadores Genéticos , Humanos , Íntrons , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Uroporfirinogênio Descarboxilase/biossíntese , Uroporfirinogênio Descarboxilase/química
20.
Anat Rec ; 250(2): 245-9, 1998 02.
Artigo em Inglês | MEDLINE | ID: mdl-9489785

RESUMO

BACKGROUND: The structure and topography of the microcirculatory bed of the human trigeminal nerve are described. Details of microvascular morphology in the epi-, peri-, and endoneurium in different parts of the nerve are emphasized. METHODS: The vascular bed of the trigeminal nerve was studied following injecting an aqueous solution of black ink and differentiating between microcirculatory components using silver nitrate impregnation. Morphometric parameters were statistically analyzed. RESULTS: Features of vascular organization that control blood flow are found within the pia mater of the trigeminal nerve root coverings, capsule and stroma of the trigeminal ganglion, and the epineurium and external layer of perineurium of extracranial branches. The precapillary arterioles, capillaries, postcapillary venules, and venules are situated in the internal layers of the perineurium. However, while the endoneurium contains only capillaries, the epineurium and external layers of the perineurium contain blood vessels whose features reflect a capability of adapting to a vascular change (transepineural arterioles, arteriolovenular anastomoses, and precapillary sphincters). The inner perineurium layer contains only precapillary sphincters. CONCLUSIONS: Results show that the make-up and topography of the microcirculatory bed throughout the trigeminal nerve are determined by features of the connective tissue components. Arteriolovenular anastomoses facilitate blood redistribution within the superficial layers of the trigeminal nerve, while precapillary sphincters and transepineural arterioles provide optimal regulation of blood flow in deeper layers of the nerve trunk.


Assuntos
Gânglio Trigeminal/irrigação sanguínea , Nervo Trigêmeo/irrigação sanguínea , Adolescente , Adulto , Arteríolas/anatomia & histologia , Capilares/anatomia & histologia , Humanos , Nervos Periféricos/irrigação sanguínea , Vênulas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...