Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(3): 1769-1784, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34847031

RESUMO

We present a multi-sensor system for consistent 3D hand pose tracking and modeling that leverages the advantages of both wearable and optical sensors. Specifically, we employ a stretch-sensing soft glove and three IMUs in combination with an RGB-D camera. Different sensor modalities are fused based on the availability and confidence estimation, enabling seamless hand tracking in challenging environments with partial or even complete occlusion. To maximize the accuracy while maintaining high ease-of-use, we propose an automated user calibration that uses the RGB-D camera data to refine both the glove mapping model and the multi-IMU system parameters. Extensive experiments show that our setup outperforms the wearable-only approaches when the hand is in the field-of-view and outplays the camera-only methods when the hand is occluded.


Assuntos
Gráficos por Computador , Dispositivos Eletrônicos Vestíveis , Mãos
2.
Comput Graph Forum ; 41(5): 25-38, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36636107

RESUMO

We propose a method for the construction of a planar curve based on piecewise clothoids and straight lines that intuitively interpolates a given sequence of control points. Our method has several desirable properties that are not simultaneously fulfilled by previous approaches: Our interpolating curves are C2 continuous, their computation does not rely on global optimization and has local support, enabling fast evaluation for interactive modeling. Further, the sign of the curvature at control points is consistent with the control polygon; the curvature attains its extrema at control points and is monotone between consecutive control points of opposite curvature signs. In addition, we can ensure that the curve has self-intersections only when the control polygon also self-intersects between the same control points. For more fine-grained control, the user can specify the desired curvature and tangent values at certain control points, though it is not required by our method. Our local optimization can lead to discontinuity w.r.t. the locations of control points, although the problem is limited by its locality. We demonstrate the utility of our approach in generating various curves and provide a comparison with the state of the art.

3.
Nat Commun ; 7: 12814, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681958

RESUMO

The mechanical wiring between cells and their surroundings is fundamental to the regulation of complex biological processes during tissue development, repair or pathology. Traction force microscopy (TFM) enables determination of the actuating forces. Despite progress, important limitations with intrusion effects in low resolution 2D pillar-based methods or disruptive intermediate steps of cell removal and substrate relaxation in high-resolution continuum TFM methods need to be overcome. Here we introduce a novel method allowing a one-shot (live) acquisition of continuous in- and out-of-plane traction fields with high sensitivity. The method is based on electrohydrodynamic nanodrip-printing of quantum dots into confocal monocrystalline arrays, rendering individually identifiable point light sources on compliant substrates. We demonstrate the undisrupted reference-free acquisition and quantification of high-resolution continuous force fields, and the simultaneous capability of this method to correlatively overlap traction forces with spatial localization of proteins revealed using immunofluorescence methods.

4.
IEEE Trans Vis Comput Graph ; 20(12): 2585-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356972

RESUMO

Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...