Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4983-4991, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38691841

RESUMO

The exploration of two-dimensional (2D) materials with exceptional physical and chemical properties is essential for the advancement of solar water splitting technologies. However, the discovery of 2D materials is currently heavily reliant on fragmented studies with limited opportunities for fine-tuning the chemical composition and electronic features of compounds. Starting from the V2DB digital library as a resource of 2D materials, we set up and execute a funnel approach that incorporates multiple screening steps to uncover potential candidates for photocatalytic water splitting. The initial screening step is based upon machine learning (ML) predicted properties, and subsequent steps involve first-principles modeling of increasing complexity, going from density functional theory (DFT) to hybrid-DFT to GW calculations. Ensuring that at each stage more complex calculations are only applied to the most promising candidates, our study introduces an effective screening methodology that may serve as a model for accelerating 2D materials discovery within a large chemical space. Our screening process yields a selection of 11 promising 2D photocatalysts.

2.
Sci Data ; 9(1): 718, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443329

RESUMO

An increasing number of electroactive compounds have recently been explored for their use in high-performance redox flow batteries for grid-scale energy storage. Given the vast and highly diverse chemical space of the candidate compounds, it is alluring to access their physicochemical properties in a speedy way. High-throughput virtual screening approaches, which use powerful combinatorial techniques for systematic enumerations of large virtual chemical libraries and respective property evaluations, are indispensable tools for an agile exploration of the designated chemical space. Herein, RedDB: a computational database that contains 31,618 molecules from two prominent classes of organic electroactive compounds, quinones and aza-aromatics, has been presented. RedDB incorporates miscellaneous physicochemical property information of the compounds that can potentially be employed as battery performance descriptors. RedDB's development steps, including: (i) chemical library generation, (ii) molecular property prediction based on quantum chemical calculations, (iii) aqueous solubility prediction using machine learning, and (iv) data processing and database creation, have been described.

3.
iScience ; 24(1): 101961, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33437941

RESUMO

Accurate prediction of the solubility of chemical substances in solvents remains a challenge. The sparsity of high-quality solubility data is recognized as the biggest hurdle in the development of robust data-driven methods for practical use. Nonetheless, the effects of the quality and quantity of data on aqueous solubility predictions have not yet been scrutinized. In this study, the roles of the size and the quality of data sets on the performances of the solubility prediction models are unraveled, and the concepts of actual and observed performances are introduced. In an effort to curtail the gap between actual and observed performances, a quality-oriented data selection method, which evaluates the quality of data and extracts the most accurate part of it through statistical validation, is designed. Applying this method on the largest publicly available solubility database and using a consensus machine learning approach, a top-performing solubility prediction model is achieved.

4.
Sci Data ; 6(1): 143, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395888

RESUMO

Water is a ubiquitous solvent in chemistry and life. It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains, including but not limited to drug discovery, paint, coating, and battery materials design. Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry. For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches. To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality. Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions, but also in the non-standard representations, size, and accessibility of data. To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...