Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(27): 9317-9324, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621131

RESUMO

An exceptionally hindered class of enantiopure NHC ligands has been developed. While racemic forms had previously been utilized, a scalable and practical route to the enantiopure form of this ligand class is described utilizing a Buchwald-Hartwig N,N-diarylation in a highly sterically demanding environment. Using this newly accessible ligand class, nickel-catalyzed enantioselective reductive coupling reactions of aldehydes and alkynes have been developed. These studies illustrate that the newly available NHC ligands are well suited for simultaneous control of regio- and enantioselectivity, even in cases with internal alkynes possessing only very subtle steric differences between two aliphatic substituents. The steric demand of the new ligand class enables a complementary regiochemical outcome compared with previously described enantioselective processes. Using this method, a number of allylic alcohol derivatives were efficiently obtained with high regioselectivity (up to >95:5) and high enantioselectivity (up to 94% ee). The reaction conditions can also be extended to the reaction of aldehydes and allenes, providing silyl-protected allylic alcohol derivatives possessing a terminal methylene substituent. Computational studies have explained the origin of the exceptional steric demand of this ligand class, the basis for enantioselectivity, and the cooperative relationship of the aldehyde, alkyne, and ligand in influencing enantioselectivity.


Assuntos
Compostos Heterocíclicos/química , Metano/análogos & derivados , Níquel/química , Aldeídos/química , Alcinos/química , Catálise , Ligantes , Metano/química , Conformação Molecular , Oxirredução , Teoria Quântica , Estereoisomerismo
2.
Acc Chem Res ; 48(6): 1736-45, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25965694

RESUMO

The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions plays an essential role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the empirical factors that influence regiochemistry can be readily understood, and more importantly, the insights suggest simple and predictable experimental variables to achieving a desired reaction outcome. These studies thus present a detailed picture of the influences that control regioselectivity in a specific catalytic reaction, but they also delineate strategies for regiocontrol that may extend to numerous classes of reactions. The work provides an illustration of how insights into the kinetics and mechanism of a catalytic process can rationalize subtle empirical findings and suggest simple and rational modifications in procedure to access a desirable reaction outcome. Furthermore, these studies present an illustration of how important challenges in organic synthesis can be met by novel reactivity afforded by base metal catalysis. The use of nickel catalysis in this instance not only provides an inexpensive and sustainable method for catalysis but also enables unique reactivity patterns not accessible to other metals.


Assuntos
Aldeídos/química , Alcenos/síntese química , Alcinos/química , Níquel/química , Silanos/química , Alcenos/química , Catálise , Cinética , Oxirredução , Teoria Quântica , Estereoisomerismo
3.
J Am Chem Soc ; 132(18): 6304-5, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20394367

RESUMO

A strategy for catalyst-controlled regioselectivity in aldehyde-alkyne reductive couplings has been developed. This strategy is the first where either regiochemical outcome may be selected for a broad range of couplings, without relying on substrate biases or directing effects. The complementary use of small cyclopropenylidene carbene ligands or highly hindered N-heterocyclic carbene ligands allows the regiochemical reversal with unbiased internal alkynes, aromatic internal alkynes, conjugated enynes, or terminal alkynes.


Assuntos
Aldeídos/química , Alcinos/química , Níquel/química , Catálise , Ligantes , Metano/análogos & derivados , Metano/química , Oxirredução , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...