Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 136(1): 1-6, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37095007

RESUMO

The improper disposal of palm oil industrial waste has led to serious environmental pollution. In this study, we isolated Paenibacillus macerans strain I6, which can degrade oil palm empty fruit bunches generated by the palm oil industry in nutrient-free water, from bovine manure biocompost and sequenced its genome on PacBio RSII and Illumina NovaSeq 6000 platforms. We obtained 7.11 Mbp of genomic sequences with 52.9% GC content from strain I6. Strain I6 was phylogenetically closely related to P. macerans strains DSM24746 and DSM24 and was positioned close to the head of the branch containing strains I6, DSM24746, and DSM24 in the phylogenetic tree. We used the RAST (rapid annotation using subsystem technology) server to annotate the strain I6 genome and discovered genes related to biological saccharification; 496 genes were related to carbohydrate metabolism and 306 genes were related to amino acids and derivatives. Among them were carbohydrate-active enzymes (CAZymes), including 212 glycoside hydrolases. Up to 23.6% of the oil palm empty fruit bunches was degraded by strain I6 under anaerobic and nutrient-free conditions. Evaluation of the enzymatic activity of extracellular fractions of strain I6 showed that amylase and xylanase activity was highest when xylan was the carbon source. The high enzyme activity and the diversity in the associated genes may contribute to the efficient degradation of oil palm empty fruit bunches by strain I6. Our results indicate the potential utility of P. macerans strain I6 for lignocellulosic biomass degradation.


Assuntos
Frutas , Genômica , Animais , Bovinos , Óleo de Palmeira , Frutas/genética , Frutas/química , Filogenia
2.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864653

RESUMO

Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii ß-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/química , Endo-1,4-beta-Xilanases/química , Lignina/química , Oryza/química , Xilanos/química , Xilosidases/química , Biocatálise , Clostridium thermocellum/enzimologia , Glucose/química , Hidrólise , Paenibacillus/enzimologia , Caules de Planta/química , Thermoanaerobacter/enzimologia
3.
J Microbiol ; 50(3): 394-400, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22752902

RESUMO

A mesophilic, facultative, anaerobic, xylanolytic-cellulolytic bacterium, TW1(T), was isolated from sludge in an anaerobic digester fed with pineapple waste. Cells stained Gram-positive, were spore-forming, and had the morphology of straight to slightly curved rods. Growth was observed in the temperature range of 30 to 50°C (optimum 37°C) and the pH range of 6.0 to 7.5 (optimum pH 7.0) under aerobic and anaerobic conditions. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The predominant isoprenoid quinone was menaquinone with seven isoprene units (MK-7). Anteiso-C(15:0), iso-C(16:0), anteiso-C(17:0), and C(16:0) were the predominant cellular fatty acids. The G+C content of the DNA was 49.5 mol%. A phylogenetic analysis based on 16S rRNA showed that strain TW1(T) belonged within the genus Paenibacillus and was closely related to Paenibacillus cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) with 97.7, 97.5, and 97.3% sequence similarity, respectively. The DNA-DNA hybridization values between the isolate and type strains of P. cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) were found to be 18.6, 18.3, and 18.0%, respectively. The protein and xylanase patterns of strain TW1(T) were quite different from those of the type strains of closely related Paenibacillus species. On the basis of DNA-DNA relatedness and phenotypic analyses, phylogenetic data and the enzymatic pattern presented in this study, strain TW1(T) should be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus xylaniclasticus sp. nov. is proposed. The type strain is TW1(T) (=NBRC 106381(T) =KCTC 13719(T) =TISTR 1914(T)).


Assuntos
Celulose/metabolismo , Paenibacillus/classificação , Paenibacillus/isolamento & purificação , Esgotos/microbiologia , Xilanos/metabolismo , Aerobiose , Anaerobiose , Ananas/metabolismo , Composição de Bases , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/metabolismo , Peptidoglicano/química , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos/citologia , Temperatura
4.
J Biosci Bioeng ; 109(1): 9-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20129074

RESUMO

The objective of this work was to remove linamarin in starch from cassava (Manihot esculenta Crantz cv. KU-50) roots, a high-cyanogen variety by using plant cell wall-degrading enzymes, xylanase and cellulase. The combination of xylanase from Bacillus firmus K-1 and xylanase and cellulase from Paenibacillus curdlanolyticus B-6 at the ratio of 1:9 showed the maximum synergism at 1.8 times for hydrolyzing cassava cortex cell walls and releasing linamarase. Combined enzyme treatment enhanced linamarin liberation from the parenchyma by 90%. In addition, when the combined enzymes were applied for detoxification during cassava starch production, a low-cyanide-product was obtained with decreased linamarin concentration (96%) compared to non-enzyme treated tissues. Based on these results, xylanase and cellulase treatment is a good method for low-cyanide-cassava starch production and could be applied for detoxification of cassava products during processing.


Assuntos
Parede Celular/metabolismo , Manipulação de Alimentos/métodos , Manihot/química , Amido/metabolismo , Bacillus/enzimologia , Parede Celular/química , Parede Celular/enzimologia , Contaminação de Alimentos/prevenção & controle , Manihot/metabolismo , Nitrilas/análise , Paenibacillus/enzimologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...