Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1297932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213329

RESUMO

Background: The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods: To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results: The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion: Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.


Assuntos
Apresentação de Antígeno , Glioblastoma , Humanos , Animais , Camundongos , Janus Quinases , Transdução de Sinais , Fatores de Transcrição STAT , Interferon gama , Imunoterapia
2.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801592

RESUMO

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with 2 etiologies. Merkel cell polyomavirus (MCPyV) integration is present in about 80% of all MCC. Virus-positive MCC (MCCP) tumors have few somatic mutations and usually express WT p53 (TP53). By contrast, virus-negative MCC (MCCN) tumors present with a high tumor mutational burden and predominantly UV mutational signature. MCCN tumors typically contain mutated TP53. MCCP tumors express 2 viral proteins: MCPyV small T antigen and a truncated form of large T antigen. MCPyV ST specifically activates expression of MDM2, an E3 ubiquitin ligase of p53, to inhibit p53-mediated tumor suppression. In this study, we assessed the efficacy of milademetan, a potent, selective, and orally available MDM2 inhibitor in several MCC models. Milademetan reduced cell viability of WT p53 MCC cell lines and triggered a rapid and sustained p53 response. Milademetan showed a dose-dependent inhibition of tumor growth in MKL-1 xenograft and patient-derived xenograft models. Here, along with preclinical data for the efficacy of milademetan in WT p53 MCC tumors, we report several in vitro and in vivo models useful for future MCC studies.


Assuntos
Carcinoma de Célula de Merkel , Infecções por Polyomavirus , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Animais , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Humanos , Indóis/farmacologia , Poliomavírus das Células de Merkel , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Piridinas/farmacologia , Pirrolidinas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Proteína Supressora de Tumor p53/genética
3.
Nat Cancer ; 3(4): 402-417, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35422503

RESUMO

Epidermal growth factor receptor (EGFR) therapy using small-molecule tyrosine kinase inhibitors (TKIs) is initially efficacious in patients with EGFR-mutant lung cancer, although drug resistance eventually develops. Allosteric EGFR inhibitors, which bind to a different EGFR site than existing ATP-competitive EGFR TKIs, have been developed as a strategy to overcome therapy-resistant EGFR mutations. Here we identify and characterize JBJ-09-063, a mutant-selective allosteric EGFR inhibitor that is effective across EGFR TKI-sensitive and resistant models, including those with EGFR T790M and C797S mutations. We further uncover that EGFR homo- or heterodimerization with other ERBB family members, as well as the EGFR L747S mutation, confers resistance to JBJ-09-063, but not to ATP-competitive EGFR TKIs. Overall, our studies highlight the potential clinical utility of JBJ-09-063 as a single agent or in combination with EGFR TKIs to define more effective strategies to treat EGFR-mutant lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Trifosfato de Adenosina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia
4.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378251

RESUMO

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Fenóis , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
5.
Mol Cancer Ther ; 20(4): 641-654, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536188

RESUMO

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.


Assuntos
Genes ras/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Oncogenes/genética , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia
6.
Clin Cancer Res ; 27(1): 276-287, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239433

RESUMO

PURPOSE: Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy. EXPERIMENTAL DESIGN: We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors. RESULTS: Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 therapy with or without radiotherapy in immune-resistant CT-2A models. Dexamethasone decreased T-lymphocyte numbers by increasing apoptosis, in addition to decreasing lymphocyte functional capacity. Myeloid and natural killer cell populations were also generally reduced by dexamethasone. Thus, dexamethasone appears to negatively affect both adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive patients with IDH wild-type GBM treated with PD-(L)1 blockade revealed poorer survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone administration was the strongest predictor of poor survival [reference, no dexamethasone; <2 mg HR, 2.16; 95% confidence interval (CI), 1.30-3.68; P = 0.003 and ≥2 mg HR, 1.97; 95% CI, 1.23-3.16; P = 0.005]. CONCLUSIONS: Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.


Assuntos
Edema Encefálico/tratamento farmacológico , Neoplasias Encefálicas/terapia , Dexametasona/farmacologia , Glioblastoma/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Edema Encefálico/etiologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral/transplante , Quimiorradioterapia/métodos , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Seguimentos , Glioblastoma/complicações , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Camundongos , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Retrospectivos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Mol Cancer Ther ; 19(7): 1406-1414, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371576

RESUMO

NUT midline carcinoma (NMC) is a rare, aggressive subtype of squamous carcinoma that is driven by the BRD4-NUT fusion oncoprotein. BRD4, a BET protein, binds to chromatin through its two bromodomains, and NUT recruits the p300 histone acetyltransferse (HAT) to activate transcription of oncogenic target genes. BET-selective bromodomain inhibitors have demonstrated on-target activity in patients with NMC, but with limited efficacy. P300, like BRD4, contains a bromodomain. We show that combining selective p300/CBP and BET bromodomain inhibitors, GNE-781 and OTX015, respectively, induces cooperative depletion of MYC and synergistic inhibition of NMC growth. Treatment of NMC cells with the novel dual p300/CBP and BET bromodomain-selective inhibitor, NEO2734, potently inhibits growth and induces differentiation of NMC cells in vitro; findings that correspond with potentiated transcriptional effects from combined BET and p300 bromodomain inhibition. In three disseminated NMC xenograft models, NEO2734 provided greater growth inhibition, with tumor regression and significant survival benefit seen in two of three models, compared with a lead clinical BET inhibitor or "standard" chemotherapy. Our findings provide a strong rationale for clinical study of NEO2734 in patients with NMC. Moreover, the synergistic inhibition of NMC growth by CBP/p300 and BET bromodomain inhibition lays the groundwork for greater mechanistic understanding of the interplay between p300 and BRD4-NUT that drives this cancer.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Carcinoma/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteína p300 Associada a E1A/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Piridonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais , Carcinoma/metabolismo , Carcinoma/patologia , Ciclo Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...