Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 878: 163193, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003343

RESUMO

Waste seaweed is a valuable source for converting into value-added carbon materials. In this study, the production of hydrochar from waste seaweed was optimized for hydrothermal carbonization in a microwave process. The produced hydrochar was compared with hydrochar synthesized by the regular process using a conventional heating oven. The results show that hydrochar produced with a holding time of 1 h by microwave heating has similar properties to the hydrochar produced in a conventionally heated oven for 4 h (200 °C and water/biomass ratio 5): carbon mass fraction (52.4 ± 3.9 %), methylene blue adsorption capacity (40.2 ± 0.2 mg g-1) and similar observations on surface functional groups and thermal stability were made between hydrochars produced by both methods. The analysis of energy consumption showed microwave assisted carbonization consume higher energy in compare to conventional oven. The present results suggest that hydrochar made from waste seaweed and using the microwave technique could be an energy-saving technology for producing hydrochar with similar specifications to hydrochar produced by conventional heating methods.

2.
Membranes (Basel) ; 8(4)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513597

RESUMO

In the present work, ceramic-supported chitosan hybrid membranes were prepared for the pervaporation dehydration of ethanol. Mullite and combined mullite-alumina (50% alumina content) tubular low-cost ceramic supports were fabricated, and their influence on membrane performance was compared to a commercial α-alumina support. The membrane preparation parameters were different ceramic supports and the concentration of chitosan solution (varying from 2 wt.% to 4 wt.%). The supports and hybrid membranes were characterized by field emission scanning electron microscopy (FE-SEM) and contact angle measurements. The results show, with increasing chitosan concentration, the permeability decreases, and selectivity increases. It was also found that the separation factor decreases with increasing feed temperature and feed water content, while the permeation flux increases. The membrane that was coated on α-alumina support with a 3 wt.% chitosan concentration exhibited the best pervaporation performance, leading to a permeation flux and separation factor of 352 g·m-2·h-1 and 200 for 90 wt.% ethanol in feed at 60 °C, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...