Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 5(5): e12548, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278188

RESUMO

This illustrated review focuses on the physical forces that regulate hemostasis and thrombosis. These phenomena span from the vessel to the cellular to the molecular scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and the size of the vessel through which it flows. Blood flow imposes forces on the vessel wall and blood cells that dictates the kinetics, structure, and stability of thrombi. The mechanical properties of blood cells create a segmented flowing fluid whereby red blood cells concentrate in the vessel core and platelets marginate to the near-wall region. At the vessel wall, shear stresses are highest, which requires a repertoire of receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed endothelium and extracellular matrices. As a thrombus grows and then contracts, forces regulate platelet aggregation as well as von Willebrand factor function and fibrin mechanics. Forces can also originate from platelets as they respond to the external forces and sense the stiffness of their local environment.

2.
Micromachines (Basel) ; 11(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948122

RESUMO

Collagen peptides are an alternative to animal derived collagens for platelet function studies under flow. The purpose of this study was to examine the use of collagen peptides in polydimethylsiloxane (PDMS) devices. Three collagen peptides with amino acid sequences and structures that capture von Willebrand factor and bind it with the platelet receptors integrin α2ß1 and glycoprotein VI were patterned on glass, silicon, and PDMS. Each of these surfaces was also functionalized with tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS). Surfaces were characterized by their ability to support platelet adhesion, topology by atomic force microscopy, contact angle, and peptides absorption. PDMS readily absorbs collagen peptides, depleting them from solution, thus reducing their adsorption to glass and silicon substrates when used for micropatterning. Treatment of PDMS with FOTS, but not bovine serum albumin or poloxamer 407, inhibits collagen peptide absorption and supports adsorption and platelet adhesion at venous and arterial shear rates. Similarly, FOTS treatment of glass or silicon supports collagen peptide adsorption even in the presence of untreated PDMS. In conclusion, PDMS acts as an absorptive sink for collagen peptides, rendering a non-adhesive surface for platelet adhesion and competing for peptides when used for micropatterning. The absorption of collagen peptides can be overcome by functionalization of PDMS with a fluorinated alkyl silane, thus allowing its use as a material for micropatterning or as a surface for platelet adhesion flow assays.

3.
Multiscale Model Simul ; 18(4): 1489-1524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33867873

RESUMO

We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.

4.
J Thromb Haemost ; 18(2): 306-317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31562694

RESUMO

BACKGROUND: The variability in bleeding patterns among individuals with hemophilia A, who have similar factor VIII (FVIII) levels, is significant and the origins are unknown. OBJECTIVE: To use a previously validated mathematical model of flow-mediated coagulation as a screening tool to identify parameters that are most likely to enhance thrombin generation in the context of FVIII deficiency. METHODS: We performed a global sensitivity analysis (GSA) on our mathematical model to identify potential modifiers of thrombin generation. Candidates from the GSA were confirmed by calibrated automated thrombography (CAT) and flow assays on collagen-tissue factor (TF) surfaces at a shear rate of 100 per second. RESULTS: Simulations identified low-normal factor V (FV) (50%) as the strongest modifier, with additional thrombin enhancement when combined with high-normal prothrombin (150%). Low-normal FV levels or partial FV inhibition (60% activity) augmented thrombin generation in FVIII-inhibited or FVIII-deficient plasma in CAT. Partial FV inhibition (60%) boosted fibrin deposition in flow assays performed with whole blood from individuals with mild and moderate FVIII deficiencies. These effects were amplified by high-normal prothrombin levels in both experimental models. CONCLUSIONS: These results show that low-normal FV levels can enhance thrombin generation in hemophilia A. Further explorations with the mathematical model suggest a potential mechanism: lowering FV reduces competition between FV and FVIII for factor Xa (FXa) on activated platelet surfaces (APS), which enhances FVIII activation and rescues thrombin generation in FVIII-deficient blood.


Assuntos
Hemofilia A , Coagulação Sanguínea , Fator V , Fator VIII , Humanos , Modelos Teóricos , Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...