Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1224596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671192

RESUMO

Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture.

2.
Phys Biol ; 17(5): 056001, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32141440

RESUMO

Trauma arising from landmines and improvised explosive devices promotes heterotopic ossification, the formation of extra-skeletal bone in non-osseous tissue. To date, experimental platforms that can replicate the loading parameter space relevant to improvised explosive device and landmine blast wave exposure have not been available to study the effects of such non-physiological mechanical loading on cells. Here, we present the design and calibration of three distinct in vitro experimental loading platforms that allow us to replicate the spectrum of loading conditions recorded in near-field blast wave exposure. We subjected cells in suspension or in a three-dimensional hydrogel to strain rates up to 6000 s-1 and pressure levels up to 45 MPa. Our results highlight that cellular activation is regulated in a non-linear fashion-not by a single mechanical parameter, it is the combined action of the applied mechanical pressure, rate of loading and loading impulse, along with the extracellular environment used to convey the pressure waves. Finally, our research indicates that PO MSCs are finely tuned to respond to mechanical stimuli that fall within defined ranges of loading.


Assuntos
Materiais Biocompatíveis/química , Explosões , Técnicas In Vitro/métodos , Pressão , Substâncias Explosivas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...