Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8019): 37-48, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961155

RESUMO

Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.


Assuntos
Biocatálise , Vias Biossintéticas , Engenharia Celular , Enzimas , Humanos , Engenharia Celular/métodos , Enzimas/metabolismo , Enzimas/química , Especificidade por Substrato , Técnicas de Química Sintética
2.
Angew Chem Int Ed Engl ; : e202319344, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519422

RESUMO

Amino acids (AAs) are modular building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides. While the 20 main proteinogenic AAs display relatively limited side chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis, but contain a broad array of structural features and functional groups. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase, PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5'-phosphate-dependent enzyme, PazB, via an SN2-like attack at C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans, show that pazamine potentially inhibits ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.

3.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168212

RESUMO

Amino acids (AAs) are modular and modifiable building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides (NRPs). While the 20 main proteinogenic AAs display relatively limited side-chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis but contain a broad array of structural features and functional groups not found in proteinogenic AAs. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5'-phosphate-dependent enzyme, PazB, via an SN2-like attack onto C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans, show that pazamine and its succinylated derivative, pazamide, potentially inhibit ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.

4.
J Am Chem Soc ; 143(3): 1673-1679, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33416325

RESUMO

The GE81112 complex has garnered much interest due to its broad antimicrobial properties and unique ability to inhibit bacterial translation initiation. Herein we report the use of a chemoenzymatic strategy to complete the first total synthesis of GE81112 B1. By pairing iron and α-ketoglutarate dependent hydroxylases found in GE81112 biosynthesis with traditional synthetic methodology, we were able to access the natural product in 11 steps (longest linear sequence). Following this strategy, 10 GE81112 B1 analogues were synthesized, allowing for identification of its key pharmacophores. A key feature of our medicinal chemistry effort is the incorporation of additional biocatalytic hydroxylations in modular analogue synthesis to rapidly enable exploration of relevant chemical space.


Assuntos
Antibacterianos/síntese química , Oxigenases de Função Mista/química , Oligopeptídeos/síntese química , Biocatálise , Hidroxilação
5.
Angew Chem Int Ed Engl ; 58(52): 18854-18858, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31610076

RESUMO

The GE81112 tetrapeptides are a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. With the exception of the 3-hydroxy-l-pipecolic acid unit, little is known about the biosynthetic origins of the non-proteinogenic amino acid monomers of the natural product family. Here, we elucidate the biogenesis of the 4-hydroxy-l-citrulline unit and establish the role of an iron- and α-ketoglutarate-dependent enzyme (Fe/αKG) in the pathway. Homology modelling and sequence alignment analysis further facilitate the rational engineering of this enzyme to become a specific 4-arginine hydroxylase. We subsequently demonstrate the utility of this engineered enzyme in the synthesis of a dipeptide fragment of the antibiotic enduracidin. This work highlights the value of applying a bioinformatics-guided approach in the discovery of novel enzymes and engineering of new catalytic activity into existing ones.


Assuntos
Citrulina/química , Hidroxilação/genética , Peptídeos/química , Pirrolidinas/síntese química , Biocatálise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...