Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 43(1): 287-296, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32936375

RESUMO

OBJECTIVES: Chiral 2-hydroxycarboxylic acids and 2-hydroxycarboxamides are valuable synthons for the chemical industry. RESULTS: The biocatalytic syntheses of (R)-mandelic acid and (R)-mandelic acid amide by recombinant Escherichia coli clones were studied. Strains were constructed which simultaneously expressed a (R)-specific oxynitrilase (hydroxynitrile lyase) from the plant Arabidopsis thaliana together with the arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191. In addition, recombinant strains were constructed which expressed a previously described acid tolerant variant of the oxynitrilase and an amide forming variant of the nitrilase. The whole cell catalysts which simultaneously expressed the (R)-specific oxynitrilase and the wild-type nitrilase transformed in slightly acidic buffer systems benzaldehyde plus cyanide preferentially to (R)-mandelic acid with ee-values > 95%. The combination of the (R)-specific oxynitrilase with the amide forming nitrilase variant gave whole cell catalysts which converted at pH-values ≤ pH 5 benzaldehyde plus cyanide with a high degree of enantioselectivity (ee > 90%) to (R)-mandelic acid amide. The acid and the amide forming catalysts also converted chlorinated benzaldehydes with cyanide to chlorinated mandelic acid or chlorinated mandelic acid amides. CONCLUSIONS: Efficient systems for the biocatalytic production of (R)-2-hydroxycarboxylic acids and (R)-2-hydroxycarboxamides were generated.


Assuntos
Aldeído Liases , Proteínas de Bactérias , Escherichia coli/genética , Ácidos Mandélicos , Proteínas Recombinantes , Aldeído Liases/genética , Aldeído Liases/metabolismo , Amidas/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Escherichia coli/metabolismo , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
2.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766372

RESUMO

The arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191 has been intensively studied as a model to understand the molecular basis for the substrate-, reaction-, and enantioselectivity of nitrilases. The nitrilase converts various aromatic and aliphatic nitriles to the corresponding acids and varying amounts of the corresponding amides. The enzyme has been analysed by site-specific mutagenesis and more than 50 different variants have been generated and analysed for the conversion of (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile. These comparative analyses demonstrated that single point mutations are sufficient to generate enzyme variants which hydrolyse (R,S)-mandelonitrile to (R)-mandelic acid with an enantiomeric excess (ee) of 91% or to (S)-mandelic acid with an ee-value of 47%. The conversion of (R,S)-2-phenylpropionitrile by different nitrilase variants resulted in the formation of either (S)- or (R)-2-phenylpropionic acid with ee-values up to about 80%. Furthermore, the amounts of amides that are produced from (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile could be changed by single point mutations between 2%-94% and <0.2%-73%, respectively. The present study attempted to collect and compare the results obtained during our previous work, and to obtain additional general information about the relationship of the amide forming capacity of nitrilases and the enantiomeric composition of the products.


Assuntos
Acetonitrilas/metabolismo , Aminoidrolases/metabolismo , Mutação , Pseudomonas fluorescens/enzimologia , Aminoidrolases/genética , Especificidade por Substrato
3.
Appl Microbiol Biotechnol ; 99(6): 2623-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25248440

RESUMO

The influence of different amino acid substitutions in the nitrilase from Pseudomonas fluorescens EBC191 (NitA) on the catalytical activity and the ability to form amides was investigated. The enzyme variant Glu137Ala was constructed because glutamate residues homologous to Glu137 are highly conserved among different members of the nitrilase superfamily and it has been suggested that these residues are indispensable for the hydrolysis of amides by enzymes belonging to the nitrilase superfamily. The enzyme variant Glu137Ala demonstrated less than 1 % of the wild-type activity but was still enzymatically competent to convert mandelonitrile to mandelic acid and mandeloamide. The tryptophan residue at position 188, which was previously identified as important for the amide forming capacity of the nitrilase, was exchanged by saturation mutagenesis for all other proteinogenic amino acids. Surprisingly, 18 of these 19 exchanges resulted in an increased formation of mandeloamide from (R,S)-mandelonitrile and three of these variants converted (R,S)-mandelonitrile to more than 90 % of mandeloamide. Furthermore, these modifications also resulted in a reversal of stereoselectivity and these variants formed in contrast to the wild-type enzyme and almost all other known nitrilases preferentially (S)-mandelic acid. The synthetic potential of one of these variants was demonstrated by the construction of recombinant E. coli clones which simultaneously expressed the nitrilase variant and the (S)-hydroxynitrile lyase (oxynitrilase) from the cassava plant (Manihot esculenta). These "bienzymatic catalysts" converted benzaldehyde plus cyanide almost exclusively to (S)-mandeloamide and did not show any inhibition in the presence of cyanide in concentrations up to 200 mM.


Assuntos
Amidas/metabolismo , Aminoidrolases/genética , Pseudomonas fluorescens/enzimologia , Acetonitrilas/metabolismo , Aldeído Liases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoidrolases/metabolismo , Benzaldeídos/metabolismo , Cianetos/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutâmico , Ácidos Mandélicos/metabolismo , Manihot/enzimologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Especificidade por Substrato
4.
Appl Microbiol Biotechnol ; 98(4): 1595-607, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23695777

RESUMO

The nitrilase from Pseudomonas fluorescens EBC191 was modified by introducing random mutations via error-prone PCR techniques in order to obtain nitrilase variants, which form increased amounts of mandeloamide from racemic mandelonitrile. A screening system was established and experimentally optimized, which allowed the screening of nitrilase variants with the intended phenotype. This system was based on the simultaneous expression of nitrilase variants and the mandeloamide converting amidase from Rhodococcus rhodochrous MP50 in recombinant Escherichia coli cells. The formation of increased amounts of mandeloamide from mandelonitrile by the nitrilase variants was detected after the addition of hydroxylamine and ferric iron ions by taking advantage of the acyltransferase activity of the amidase, which resulted in the formation of coloured iron(III)-hydroxamate complexes from mandeloamide. The system was applied for the screening of libraries of nitrilase variants and 30 enzyme variants identified, which formed increased amounts of mandeloamide from racemic mandelonitrile. The increase in amide formation was quantified by high-performance liquid chromatography and the genes encoding the relevant nitrilase variants sequenced. Thus, different types of mutations were identified. One group of mutants carried different deletions at the carboxy-terminus. The other types of variants carried amino acid exchanges in positions that had not been related previously to an increased amide formation. Finally, a nitrilase variant was created by combining two independently obtained point mutations. This enzyme variant demonstrated a true nitrile hydratase activity as it formed mandeloamide and mandelic acid in a ratio of about 19:1 from racemic mandelonitrile.


Assuntos
Acetonitrilas/metabolismo , Aminoidrolases/metabolismo , Aminoidrolases/genética , Mutagênese
5.
Appl Environ Microbiol ; 76(11): 3668-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382812

RESUMO

The arylacetonitrilase from Pseudomonas fluorescens EBC191 differs from previously studied arylacetonitrilases by its low enantiospecificity during the turnover of mandelonitrile and by the large amounts of amides that are formed in the course of this reaction. In the sequence of the nitrilase from P. fluorescens, a cysteine residue (Cys163) is present in direct neighborhood (toward the amino terminus) to the catalytic active cysteine residue, which is rather unique among bacterial nitrilases. Therefore, this cysteine residue was exchanged in the nitrilase from P. fluorescens EBC191 for various amino acid residues which are present in other nitrilases at the homologous position. The influence of these mutations on the reaction specificity and enantiospecificity was analyzed with (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile as substrates. The mutants obtained demonstrated significant differences in their amide-forming capacities. The exchange of Cys163 for asparagine or glutamine residues resulted in significantly increased amounts of amides formed. In contrast, a substitution for alanine or serine residues decreased the amounts of amides formed. The newly discovered mutation was combined with previously identified mutations which also resulted in increased amide formation. Thus, variants which possessed in addition to the mutation Cys163Asn also a deletion at the C terminus of the enzyme and/or the modification Ala165Arg were constructed. These constructs demonstrated increased amide formation capacity in comparison to the mutants carrying only single mutations. The recombinant plasmids that encoded enzyme variants which formed large amounts of mandeloamide or that formed almost stoichiometric amounts of mandelic acid from mandelonitrile were used to transform Escherichia coli strains that expressed a plant-derived (S)-hydroxynitrile lyase. The whole-cell biocatalysts obtained in this way converted benzaldehyde plus cyanide either to (S)-mandeloamide or (S)-mandelic acid with high yields and enantiopurities.


Assuntos
Amidas/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Ácidos Carboxílicos/metabolismo , Pseudomonas fluorescens/enzimologia , Substituição de Aminoácidos/genética , Benzaldeídos/metabolismo , Cianetos/metabolismo , Escherichia coli/genética , Ácidos Mandélicos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...