Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 228: 105946, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925369

RESUMO

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.

2.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.


Assuntos
COVID-19 , Vírus da Influenza A , Orthomyxoviridae , Humanos , SARS-CoV-2 , Vírus da Influenza A/genética , Motivos de Nucleotídeos , Pandemias , RNA , RNA Viral/genética , RNA Viral/química
3.
Viruses ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35215915

RESUMO

SARS-CoV-2 belongs to the Coronavirinae family. Like other coronaviruses, SARS-CoV-2 is enveloped and possesses a positive-sense, single-stranded RNA genome of ~30 kb. Genomic RNA is used as the template for replication and transcription. During these processes, positive-sense genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) are created. Several studies presented the importance of the genomic RNA secondary structure in SARS-CoV-2 replication. However, the structure of sgRNAs has remained largely unsolved so far. In this study, we probed the sgRNA M model of SARS-CoV-2 in vitro. The presented model molecule includes 5'UTR and a coding sequence of gene M. This is the first experimentally informed secondary structure model of sgRNA M, which presents features likely to be important in sgRNA M function. The knowledge of sgRNA M structure provides insights to better understand virus biology and could be used for designing new therapeutics.


Assuntos
Genoma Viral , RNA Viral/química , SARS-CoV-2/genética , Regiões 5' não Traduzidas , COVID-19/virologia , Genômica , Humanos , Fases de Leitura Aberta , RNA Viral/genética , Transcrição Gênica
4.
J Biol Chem ; 297(6): 101245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688660

RESUMO

RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.


Assuntos
Reagentes de Ligações Cruzadas/química , Vírus da Influenza A/química , Influenza Humana/virologia , RNA Viral/química , Tiouridina/química , Pareamento de Bases , Sequência de Bases , Humanos , Conformação de Ácido Nucleico
5.
Mol Ther Nucleic Acids ; 19: 627-642, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31945726

RESUMO

The influenza A virus is a human pathogen that poses a serious public health threat due to rapid antigen changes and emergence of new, highly pathogenic strains with the potential to become easily transmitted in the human population. The viral genome is encoded by eight RNA segments, and all stages of the replication cycle are dependent on RNA. In this study, we designed small interfering RNA (siRNA) targeting influenza segment 5 nucleoprotein (NP) mRNA structural motifs that encode important functions. The new criterion for choosing the siRNA target was the prediction of accessible regions based on the secondary structure of segment 5 (+)RNA. This design led to siRNAs that significantly inhibit influenza virus type A replication in Madin-Darby canine kidney (MDCK) cells. Additionally, chemical modifications with the potential to improve siRNA properties were introduced and systematically validated in MDCK cells against the virus. A substantial and maximum inhibitory effect was achieved at concentrations as low as 8 nM. The inhibition of viral replication reached approximately 90% for the best siRNA variants. Additionally, selected siRNAs were compared with antisense oligonucleotides targeting the same regions; this revealed that effectiveness depends on both the target accessibility and oligonucleotide antiviral strategy. Our new approach of target-site preselection based on segment 5 (+)RNA secondary structure led to effective viral inhibition and a better understanding of the impact of RNA structural motifs on the influenza replication cycle.

6.
Sci Rep ; 9(1): 3801, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846846

RESUMO

Influenza virus causes seasonal epidemics and dangerous pandemic outbreaks. It is a single stranded (-)RNA virus with a segmented genome. Eight segments of genomic viral RNA (vRNA) form the virion, which are then transcribed and replicated in host cells. The secondary structure of vRNA is an important regulator of virus biology and can be a target for finding new therapeutics. In this paper, the secondary structure of segment 5 vRNA is determined based on chemical mapping data, free energy minimization and structure-sequence conservation analysis for type A influenza. The revealed secondary structure has circular folding with a previously reported panhandle motif and distinct novel domains. Conservations of base pairs is 87% on average with many structural motifs that are highly conserved. Isoenergetic microarray mapping was used to additionally validate secondary structure and to discover regions that easy bind short oligonucleotides. Antisense oligonucleotides, which were designed based on modeled secondary structure and microarray mapping, inhibit influenza A virus proliferation in MDCK cells. The most potent oligonucleotides lowered virus titer by ~90%. These results define universal for type A structured regions that could be important for virus function, as well as new targets for antisense therapeutics.


Assuntos
Genoma Viral , Vírus da Influenza A/genética , Oligonucleotídeos Antissenso , Estrutura Secundária de Proteína
7.
Sci Rep ; 7(1): 15041, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118447

RESUMO

Influenza A virus is a threat for humans due to seasonal epidemics and occasional pandemics. This virus can generate new strains that are dangerous through nucleotide/amino acid changes or through segmental recombination of the viral RNA genome. It is important to gain wider knowledge about influenza virus RNA to create new strategies for drugs that will inhibit its spread. Here, we present the experimentally determined secondary structure of the influenza segment 5 (+)RNA. Two RNAs were studied: the full-length segment 5 (+)RNA and a shorter construct containing only the coding region. Chemical mapping data combined with thermodynamic energy minimization were used in secondary structure prediction. Sequence/structure analysis showed that the determined secondary structure of segment 5 (+)RNA is mostly conserved between influenza virus type A strains. Microarray mapping and RNase H cleavage identified accessible sites for oligonucleotides in the revealed secondary structure of segment 5 (+)RNA. Antisense oligonucleotides were designed based on the secondary structure model and tested against influenza virus in cell culture. Inhibition of influenza virus proliferation was noticed, identifying good targets for antisense strategies. Effective target sites fall within two domains, which are conserved in sequence/structure indicating their importance to the virus.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Conformação de Ácido Nucleico , RNA Viral/química , Replicação Viral/genética , Animais , Antivirais/uso terapêutico , Sequência de Bases , Cães , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Oligonucleotídeos Antissenso/genética , Fases de Leitura Aberta/genética , RNA Viral/genética , RNA Viral/metabolismo , Ribonuclease H/metabolismo , Replicação Viral/efeitos dos fármacos
8.
PLoS One ; 11(2): e0148281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848969

RESUMO

Influenza A is a negative sense RNA virus that kills hundreds of thousands of humans each year. Base pairing in RNA is very favorable, but possibilities for RNA secondary structure of the influenza genomic RNA have not been investigated. This work presents the first experimentally-derived exploration of potential secondary structure in an influenza A naked (protein-free) genomic segment. Favorable folding regions are revealed by in vitro chemical structure mapping, thermodynamics, bioinformatics, and binding to isoenergetic microarrays of an entire natural sequence of the 875 nt segment 8 vRNA and of a smaller fragment. Segment 8 has thermodynamically stable and evolutionarily conserved RNA structure and encodes essential viral proteins NEP and NS1. This suggests that vRNA self-folding may generate helixes and loops that are important at one or more stages of the influenza life cycle.


Assuntos
Genoma Viral/genética , Virus da Influenza A Subtipo H5N1 , Dobramento de RNA , RNA Viral/química , Pareamento de Bases , Sequência de Bases , Simulação por Computador , Virus da Influenza A Subtipo H5N1/genética , Dados de Sequência Molecular , RNA Viral/genética
9.
PLoS One ; 10(10): e0141132, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488402

RESUMO

Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Viral/genética , Proteínas Virais/genética , Replicação Viral/genética , Processamento Alternativo/genética , Animais , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Conformação de Ácido Nucleico , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...