Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 69(4): 2287-2295, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34251748

RESUMO

The total impact of the worldwide COVID-19 pandemic is still emerging, changing all relationships as a result, including those with pet animals. In the infection process, the use of angiotensin-converting enzyme 2 (ACE2) as a cellular receptor to the spike protein of the new coronavirus is a fundamental step. In this sense, understanding which residue plays what role in the interaction between SARS-CoV-2 spike glycoprotein and ACE2 from cats, dogs, and ferrets is an important guide for helping to choose which animal model can be used to study the pathology of COVID-19, and if there are differences between these interactions and those occurring in the human system. To help answer these questions, we performed classical molecular dynamics simulations to evaluate, from an atomistic point of view, the interactions in these systems. Our results show that there are significant differences in the interacting residues between the systems from different animal species, and the role of ACE2 key residues are different in each system, and can assist in the search for different inhibitors for each animal.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Animais , COVID-19/veterinária , Gatos , Cães , Furões , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...