Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35604964

RESUMO

The precise temperature distribution measurement is crucial in many industrial fields, where ultrasonic tomography (UT) has broad application prospects and significance. In order to improve the resolution of reconstructed temperature distribution images and maintain high accuracy, a novel two-step reconstruction method is proposed in this article. First, the problem of solving the temperature distribution is converted to an optimization problem and then solved by an improved version of the equilibrium optimizer (IEO), in which a new nonlinear time strategy and novel population update rules are deployed. Then, based on the low-resolution and high-precision images reconstructed by IEO, Gaussian process regression (GPR) is adopted to enhance image resolution and keep the reconstruction errors low. After that, the number of divided grids and the parameters of IEO are also further studied to improve the reconstruction quality. The results of numerical simulations and experiments indicate that high-resolution images with low reconstruction errors can be reconstructed effectively by the proposed IEO-GPR method, and it also shows excellent robust performance. For a complex three-peak temperature distribution, a competitive accuracy with 3.10% and 2.37% error at root-mean-square error and average relative error is achieved, respectively. In practical experiment, the root-mean-square error of IEO-GPR is 0.72%, which is at least 0.89% lower than that of conventional algorithms.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Distribuição Normal , Imagens de Fantasmas , Temperatura , Ultrassonografia
2.
Sensors (Basel) ; 21(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577480

RESUMO

Understanding the scene in front of a vehicle is crucial for self-driving vehicles and Advanced Driver Assistance Systems, and in urban scenarios, intersection areas are one of the most critical, concentrating between 20% to 25% of road fatalities. This research presents a thorough investigation on the detection and classification of urban intersections as seen from onboard front-facing cameras. Different methodologies aimed at classifying intersection geometries have been assessed to provide a comprehensive evaluation of state-of-the-art techniques based on Deep Neural Network (DNN) approaches, including single-frame approaches and temporal integration schemes. A detailed analysis of most popular datasets previously used for the application together with a comparison with ad hoc recorded sequences revealed that the performances strongly depend on the field of view of the camera rather than other characteristics or temporal-integrating techniques. Due to the scarcity of training data, a new dataset is created by performing data augmentation from real-world data through a Generative Adversarial Network (GAN) to increase generalizability as well as to test the influence of data quality. Despite being in the relatively early stages, mainly due to the lack of intersection datasets oriented to the problem, an extensive experimental activity has been performed to analyze the individual performance of each proposed systems.


Assuntos
Condução de Veículo , Redes Neurais de Computação
3.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502584

RESUMO

Anticipating pedestrian crossing behavior in urban scenarios is a challenging task for autonomous vehicles. Early this year, a benchmark comprising JAAD and PIE datasets have been released. In the benchmark, several state-of-the-art methods have been ranked. However, most of the ranked temporal models rely on recurrent architectures. In our case, we propose, as far as we are concerned, the first self-attention alternative, based on transformer architecture, which has had enormous success in natural language processing (NLP) and recently in computer vision. Our architecture is composed of various branches which fuse video and kinematic data. The video branch is based on two possible architectures: RubiksNet and TimeSformer. The kinematic branch is based on different configurations of transformer encoder. Several experiments have been performed mainly focusing on pre-processing input data, highlighting problems with two kinematic data sources: pose keypoints and ego-vehicle speed. Our proposed model results are comparable to PCPA, the best performing model in the benchmark reaching an F1 Score of nearly 0.78 against 0.77. Furthermore, by using only bounding box coordinates and image data, our model surpasses PCPA by a larger margin (F1=0.75 vs. F1=0.72). Our model has proven to be a valid alternative to recurrent architectures, providing advantages such as parallelization and whole sequence processing, learning relationships between samples not possible with recurrent architectures.


Assuntos
Pedestres , Humanos , Processamento de Linguagem Natural
4.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183202

RESUMO

This paper introduces a new methodology for reconstructing vehicle densities of freeway segments by utilizing the limited data collected by traffic-counting sensors and developing a macroscopic traffic stream model formulated as a switched reduced-order state observer design problem with unknown or partially known inputs. Specifically, the traffic network is modeled as a hybrid dynamic system in a state space that incorporates unknown inputs. For freeway segments with traffic-counting sensors installed, vehicle densities are directly computed using field traffic count data. A reduced-order state observer is designed to analyze traffic state transitions for freeway segments without field traffic count data to indirectly estimate the vehicle densities for each freeway segment. A simulation-based experiment is performed applying the methodology and using data of a segment of Beijing Jingtong freeway in Beijing, China. The model execution results are compared with the field data associated with the same freeway segment, and highly consistent results are achieved. The proposed methodology is expected to be adopted by traffic engineers to evaluate freeway operations and develop effective management strategies.

5.
Sensors (Basel) ; 19(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487866

RESUMO

When faced with problems such as traffic state estimation, state prediction, and congestion identification for the expressway network, a novel switched observer design strategy with jump states is required to reconstruct the traffic scene more realistically. In this study, the expressway network is firstly modeled as the special discrete switched system, which is called the piecewise affine system model, a partition of state subspace is introduced, and the convex polytopes are utilized to describe the combination modes of cells. Secondly, based on the hybrid dynamic traffic network model, the corresponding switched observer (including state jumps) is designed. Furthermore, by applying multiple Lyapunov functions and S-procedure theory, the observer design problem can be converted into the existence issue of the solutions to the linear matrix inequality. As a result, a set of gain matrices can be obtained. The estimated states start to jump when the mode changes occur, and the updated value of the estimated state mainly depends on the estimated and the measured values at the previous time. Lastly, the designed state jump observer is applied to the Beijing Jingkai expressway, and the superiority and the feasibility are demonstrated in the application results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...