Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676154

RESUMO

In the evolving landscape of Industry 4.0, the integration of advanced wireless technologies into manufacturing processes holds the promise of unprecedented connectivity and efficiency. In particular, the data transmission in a heavy industry environment needs stable connectivity with mobile operators. This paper deals with the performance study of 4G and 5G mobile signal coverage within a complex factory environment. For this purpose, a cost-effective and portable measurement setup was realized and used to provide long-term measurement campaigns monitoring and recording several key parameter indicators (KPIs) in 4G/5G downlink and upload. To support the reproducibility of the provided study and other research activities, the measured dataset is publicly available for download. Among others findings, the obtained results show how the performance of 4G/5G is influenced by a heavy industry environment and of the time of day on the network load.

2.
Sensors (Basel) ; 23(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836884

RESUMO

The design of a low-pass-frequency filter with the electronic change of the approximation characteristics of resulting responses is presented. The filter also offers the reconnection-less reconfiguration of the order (1st-, 2nd-, 3rd- and 4th-order functions are available). Furthermore, the filter offers the electronic control of the cut-off frequency of the output response. The feature of the electronic change in the approximation characteristics is investigated for the Butterworth, Bessel, Elliptic, Chebyshev and Inverse Chebyshev approximations. The design is verified by PSpice simulations and experimental measurements. The results are also supported by the transient domain response (response to the square waveform), comparison of the group delay, sensitivity analysis and implementation feasibility based on given approximation. The benefit of the proposed electronic change in the approximation characteristics feature (in general signal processing or for sensors in particular) is presented and discussed for an exemplary scenario.

3.
J Adv Res ; 41: 49-62, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328753

RESUMO

INTRODUCTION: Infra-red (IR) and visible light (VL) based systems developed for transmission of information about physical quantities (e.g. humidity, temperature) out from closed areas, cannot be effectively employed in case of specific conditions in a targeted environment (because of fog or vapor for example). OBJECTIVES: In this work, we introduce a concept of wireless short-range transmitter and receiver to sense physical quantities, for instance temperature, with slow variation. The proposed concept is able to transmit analog-based information from isolated environments (e.g. aquariums or environments for plant growing) with high immunity against vapor and fog that limits standard optical (laser, IR band) methods of communication. METHODS: In this work, a new concept of short range radiofrequency (RF) communication device consisting of transmitting and receiving parts build from active devices fabricated in 0.35 µm I3T25 3.3 VCMOS process and ferrite antennas is selected. RF part uses medium-wave propagation within 10 mm distance at frequency 700 kHz. Such an approach offers minimal path loss of the radiated energy of a signal and low-gain amplification required for restoration of similar levels as available at the transmitting side. RESULTS: The processing of base-band signals of simple (sine wave) and complex (electrocardiogram) character was verified experimentally through the system. Application example of temperature monitoring in a closed environment, based on a temperature sensor (thermistor), verifies operationability in temperature range from 10 °C up to 50 °C. CONCLUSION: Compared to state-of-the-art solution, the presented concept has several advantages, for instance: less complexity; using of simpler type of modulation and demodulation; lower power consumption and significantly reduced issues caused by an environment with special transmission conditions (e.g. fog and vapor). The obtained results are in good agreement with expectations. Among others, the presented system brings beneficial performances for similar applications targeting on monitoring of low-frequency or slowly varying signals.


Assuntos
Eletrocardiografia , Ondas de Rádio , Temperatura , Desenho de Equipamento , Umidade
4.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236471

RESUMO

This work presents a novel methodology to adjust the inductance of real coils (electronically) and to cancel out serial losses (up to tens or even hundreds of Ohms in practice) electronically. This is important in various fields of electromagnetic sensors (inductive sensors), energy harvesting, measurement and especially in the instrumentation of various devices. State-of-the-art methods do not solve the problem of cancellation of real serial resistance, which is the most important parasitic feature in low- and middle-frequency bands. In this case, the employment of serial negative resistance is not possible due to stability issues. To solve this issue, two solutions allowing the cancellation of serial resistance by the value of the passive element and an electronically adjustable parameter are introduced. The operational ranges are between 0.1 and 1 mH and 0.1 and 10 mH, valid in bandwidths from hundreds of Hz up to hundreds of kHz. The proposed concepts are experimentally tested in two applications: an electronically tunable oscillator of LC type and an electronically tunable band-pass RLC filter. The presented methodology offers significant improvements in the process of circuit design employing inductors and can be beneficially used for on-chip design, where serial resistance issues can be very significant.

5.
Sci Rep ; 11(1): 21826, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750380

RESUMO

An economic concept of acoustic shock wave sensing readout system for simple computer processing is introduced in this work. Its application can be found in precise initialization of the stopwatch from the starter sound, handclap or gun in competitive sport races but also in many other places. The proposed device consists of several low-cost commercially available components and it is powered by a 9 V battery. The proposed device reliably reacts on incoming acoustic shock wave by generation of explicit impulse having controllable duration. It significantly overcomes basic implementations using only a microphone and amplifier (generating parasitic burst instead of defined and distinct impulse) or systems allowing a limited number of adjustable features (gain and/or threshold of the comparator-our concept offers the adjustment of gain, cut-off frequency, threshold level and time duration of active state). In comparison with standard methods, the proposed approach simplifies and makes sensing device less expensive and universal for any powder-based starting gun (without necessity to adapt starting gun). The proposed device, among others, has the following features: impulse duration can be controlled from hundreds of µs up to 2.3 s, the gain range of linear part of processing from 6 to 40 dB and open-collector output compatible with 5 V TTL or 3.3 V CMOS logic. The initialization has been tested in the range from tens of centimeters up to four meters. In order to highlight the important spectral components, the spectral character of the signal can be optimally reduced by a low-pass filter. The quiescent power consumption of the designed simple analog circuit reaches 90 mW. Several use cases, response of the designed system on gunshot signature, talking, hand-clapping and hit on the sensing microphone, are studied and compared to each other. Simulation and experimental results confirm functionality of the realized system.

6.
Sensors (Basel) ; 21(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34770682

RESUMO

This paper presents the design of a voltage-mode three-input single-output multifunction first-order filter employing commercially available LT1228 IC for easy verification of the proposed circuit by laboratory measurements. The proposed filter is very simple, consisting of a single LT1228 as an active device with two resistors and one capacitor. The output voltage node is low impedance, resulting in an easy cascade-ability with other voltage-mode configurations. The proposed filter provides four filter responses: low-pass filter (LP), high-pass filter (HP), inverting all-pass filter (AP-), and non-inverting all-pass filter (AP+) in the same circuit configuration. The selection of output filter responses can be conducted without additional inverting or double gains, which is easy to be controlled by the digital method. The control of pole frequency and phase response can be conducted electronically through the bias current (IB). The matching condition during tuning the phase response with constant voltage gain is not required. Moreover, the pass-band voltage gain of the LP and HP functions can be controlled by adjusting the value of resistors without affecting the pole frequency and phase response. Additionally, the phase responses of the AP filters can be selected as both lagging or leading phase responses. The parasitic effects on the filtering performances were also analyzed and studied. The performances of the proposed filter were simulated and experimented with a ±5 V voltage supply. For the AP+ experimental result, the leading phase response for 1 kHz to 1 MHz frequency changed from 180 to 0 degrees. For the AP- experimental result, the lagging phase response for 1 kHz to 1 MHz frequency changed from 0 to -180 degrees. The design of the quadrature oscillator based on the proposed first-order filter is also included as an application example.

7.
J Adv Res ; 25: 159-170, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922983

RESUMO

This study presents a Fractional Order Proportional Integral Derivative Acceleration (FOPIDA) controller design methodology to improve set point and disturbance reject control performance. The proposed controller tuning method performs a multi-objective optimal fine-tuning strategy that implements a Consensus Oriented Random Search (CORS) algorithm to evaluate transient simulation results of a set point filter type Two Degree of Freedom (2DOF) FOPIDA control system. Contributions of this study have three folds: Firstly, it addresses tuning problem of FOPIDA controllers for first order time delay systems. Secondly, the study aims fine-tuning of 2DOF FOPIDA control structure for improved set point and disturbance rejection control according to transient simulations of implementation models. This enhances practical performance of theoretical tuning method according to implementation requirements. Thirdly, the paper presents a hybrid controller tuning methodology that increases effectiveness of the CORS algorithm by using stabilizing controller coefficients as an initial configuration. Accordingly, the CORS algorithm performs the fine-tuning of 2DOF FOPIDA controllers to achieve an improved set point and disturbance rejection control performances. This fine-tuning is carried out by considering transient simulation results of 2DOF FOPIDA controller implementation model. Moreover, Reference to Disturbance Ratio (RDR) formulation of the FOPIDA controller is derived and used for measurement of disturbance rejection control performance. Illustrative design examples are presented to demonstrate effectiveness of the proposed method.

8.
J Adv Res ; 25: 257-274, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922992

RESUMO

The paper discusses a new design of a current-mode reconnection-less reconfigurable fractional-order (FO) low-pass filter of various orders. The filtering structure is based on a 4th-order leap-frog topology using operational transconductance amplifiers as basic building blocks. The resulting order of the filter is given by the setting of current gains (allowing the reconnection-less reconfiguration) alongside with the values of the fractional-order capacitors realized by the RC ladder networks. For this purpose, RC ladder networks of orders 0.3, 0.4, 0.5, 0.6 and 0.7 have been designed. The fractional-order form of the filter contains from one up to four FO capacitors (remaining capacitors (if there are any) are of integer-order) allowing to obtain low-pass functions of order of 3 + α, 2 + α, 1 + α, 2 + α + ß, 1 + α + ß, α + ß, 1 + α + ß + Î³, α + ß + Î³ and α + ß + Î³ + Î´. The proposed filter offers a wide variety of possible order combinations with an increasing degree of freedom as the number of fractional-order capacitors within the structure increases. The proposal is supported by the PSpice simulations of magnitude and phase characteristics, pole frequency adjustment and stability analysis. Moreover, the experimental measurements of the implemented filter were carried out and compared with the simulation results. The possibility of the electronic control of the fractional order is also discussed and presented.

9.
Sensors (Basel) ; 20(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824797

RESUMO

This paper introduces a new current-controlled current-amplifier suitable for precise measurement applications. This amplifier was developed with strong emphasis on linearity leading to low total harmonic distortion (THD) of the output signal, and on linearity of the gain control. The presented circuit is characterized by low input and high output impedances. Current consumption is significantly smaller than with conventional quadratic current multipliers and is comparable in order to the maximum processed input current, which is ±200 µA. This circuit is supposed to be used in many sensor applications, as well as a precise current multiplier for general analog current signal processing. The presented amplifier (current multiplier) was designed by an uncommon topology based on linear sub-blocks using MOS transistors working in their linear region. The described circuit was designed and fabricated in a C035 I3T25 0.35-µm ON Semiconductor process because of the demand of the intended application for higher supply voltage. Nevertheless, the topology is suitable also for modern smaller CMOS technologies and lower supply voltages. The performance of the circuit was verified by laboratory measurement with parameters comparable to the Cadence simulation results and presented here.

10.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098257

RESUMO

This paper presents a compact and simple design of adjustable triangular and square wave functional generators employing fundamental cells fabricated on a single integrated circuit (IC) package. Two solutions have electronically tunable repeating frequency. The linear adjustability of repeating frequency was verified in the range between 17 and 264 kHz. The main benefits of the proposed generator are the follows: A simple adjustment of the repeating frequency by DC bias current, Schmitt trigger (threshold voltages) setting by DC driving voltage, and output levels in hundreds of mV when the complementary metal-oxide semiconductor (CMOS) process with limited supply voltage levels is used. These generators are suitable to provide a simple conversion of illuminance to frequency of oscillation that can be employed for illuminance measurement and sensing in the agriculture applications. Experimental measurements proved that the proposed concept is usable for sensing of illuminance in the range from 1 up to 500 lx. The change of illuminance within this range causes driving of bias current between 21 and 52 µA that adjusts repeating frequency between 70 and 154 kHz with an error up to 10% between the expected and real cases.

11.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567398

RESUMO

This paper presents a simple relaxation generator, suitable for a sensor interface, operating as a transducer of capacitance to frequency/period. The proposed circuit employs a current feedback operational amplifier, fabricated in I3T25 0.35 µ m ON Semiconductor CMOS process, and four passive elements including a grounded capacitor (the sensed parameter). It offers a low-impedance voltage output of the generated square wave. Additional frequency to DC voltage converter offers output information in the form of voltage. The experimental capacitance variation from 6.8 nF to 100 nF yields voltage change in the range from 21 mV to 106 mV with error below 5% and sensitivity 0.912 mV/nF evaluated over the full range of change. These values are in good agreement with simulation results obtained from the Mathcad model of frequency to DC voltage transducer passive circuit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...