Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(10): 3276-3283, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229608

RESUMO

The adverse effects of electrochemical bubbles on the performance of gas-evolving electrodes have been extensively studied. However, the ways in which bubbles dynamically alter the electrochemically active surface area during bubble evolution are not well understood. Here, we study hydrogen evolution at industrially relevant current densities by using controlled microtexture to examine this fundamental relationship. Surprisingly, the most densely microtextured electrodes have the lowest performance on an active surface area basis. Using high-speed imaging, we show that the benefits of microtexture to release smaller bubbles more consistently are outweighed by the inactivation induced by bubbles growing within the denser microtexture, causing these performance limitations. Additionally, we show that the area beneath adhered bubbles is electrochemically active, contrary to currently held assumptions. Our study therefore has broad implications for electrode design to avoid ineffective use of precious catalyst materials, which is especially critical for porous electrodes and three-dimensional structures with high specific surface areas.

2.
Langmuir ; 38(3): 1020-1033, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014259

RESUMO

The novel use of carbon dioxide (CO2) electroreduction to generate carbon-based products which do not contribute to the greenhouse effect has promoted the vision of carbon dioxide as a renewable feedstock for future clean fuel production. Depending on the material choice for the electrocatalysis, a certain variety of products is expected from the carbon dioxide reduction reaction (CO2RR). However, as the CO2 concentration in areas close to the working electrode (relative to the diffusive boundary layer) decreases as it is being consumed and transformed into other products, the generation of H2 is favored to the detriment of CO2 electroreduction. Therefore, the extent to which H2 is produced can be used as a metric to evaluate the efficiency of CO2RR. This article proposes a model that accounts for the modes in which aqueous gas depletion evolves over time and affects the long-term CO2 electroreduction and the corresponding pH evolution near the electrode's surface. For the latter, two main contributions are distinguished: gas depletion due to CO2 consumption and ion generation in areas close to the electrocatalyst surface. pH is then suggested as an accurate and indirect means to measure CO2 concentration in a liquid electrolyte. We conclude that CO2 depletion causes a strong decay in the electrochemical reaction efficiency. In the end, we discuss several methods which may delay the onset of the adverse effects caused by gas depletion, such as the utilization of pulsed electroreduction, cycling the applied current to electrodes on and off periodically.

3.
Langmuir ; 34(25): 7309-7318, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29847948

RESUMO

Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O2 nanobubbles resulting from the electrooxidation of H2O2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, inbp, is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, tind, dramatically decreases as the applied current approaches inbp, a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below inbp, nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic tind. We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, Ea, which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O2 molecules contained in the nucleus (50 to 900 molecules).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...