Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275335

RESUMO

This study aimed to investigate the effects of dental coating materials on Streptococcus mutans biofilm formation. The test materials were PRG Barrier Coat (PRG), BioCoat Ca (BioC), and FluorDental Jelly (FluorJ). Bovine enamel specimens were demineralized to mimic early enamel lesions. The biofilm was developed on a specimen treated with one of the materials by using a modified Robbins device flow-cell system. Scanning electron and fluorescence confocal laser scanning microscopy, viable and total cell counts, and gene expression assessments of the antibiofilm were performed. Ion incorporation was analyzed using a wavelength-dispersive X-ray spectroscopy electron probe microanalyzer. All materials allowed biofilm formation but reduced its volume. FluorJ was the only material that inhibited biofilm accumulation and had a bactericidal effect, revealing 0.66 log CFU in viable cells and 1.23 log copy reduction in total cells compared with the untreated group after 24 h of incubation. The ions released from PRG varied depending on the element. BioC contributed to enamel remineralization by supplying calcium ions while blocking the acid produced from the biofilm. In summary, the dental coating materials physically prevented acid attacks from the biofilm while providing ions to the enamel to improve its mechanical properties.

2.
Int J Dent ; 2023: 3938522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547814

RESUMO

Objective: This study aimed to compare an experimental model simulating clinical root canal irrigation (root canal model) with a conventional experimental model immersing dentin sample to irrigants (immersion model) to evaluate removal of the smear layer and decalcification of the root canal dentin using sodium hypochlorite (NaOCl) and two different concentrations of ethylenediaminetetraacetic acid (EDTA) solution. Materials and Methods: Forty-five single-rooted extracted human teeth were prepared using a Ni-Ti rotary file. EDTA, NaOCl, and citric acid were used in the root canal models and the immersion models. After the irrigation protocol, root canal surfaces were observed under scanning electron microscopy. Residual smear and decalcification of the root canal dentin were evaluated objectively by measuring the percentage of the area occupied by visible dentin tubules, the number of visible dentin tubules, and the mean area of a visible single dentin tubule. Results: Root canal and immersion models with the same irrigation protocol showed significantly different results for smear residues and decalcification of root canal dentin. In the root canal model, neither different EDTA concentrations nor the order of EDTA and NaOCl applications significantly impacted smear residues or decalcification of root canal dentin. Furthermore, no erosion of the root canal dentin surface was observed in any experimental groups in the root canal model using EDTA and NaOCl compared to intact dentin. Conclusions: Experimental design affected results for residual smear layer and decalcification of root canal dentin. The order of EDTA and NaOCl use and the concentration of EDTA did not affect results. EDTA and NaOCl irrigation did not cause erosion in the root canal model in this study.

3.
Antibiotics (Basel) ; 11(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35740134

RESUMO

Antimicrobial mouthwash improves supragingival biofilm control when used in conjunction with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has been no significant change in the strength of the evidence over the last decade. A strategy for biofilm control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following retarded penetration, and ecological changes to the microbiota. These concerns require further elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to preserve the benefits of the normal resident oral microflora.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35627588

RESUMO

The coronavirus disease pandemic has afforded dental professionals an opportunity to reconsider infection control during treatment. We investigated the efficacy of combining extraoral high-volume evacuators (eHVEs) with preprocedural mouth rinsing in reducing aerosol contamination by ultrasonic scalers. A double-masked, two-group, crossover randomized clinical trial was conducted over eight weeks. A total of 10 healthy subjects were divided into two groups; they received 0.5% povidone-iodine (PI), essential oil (EO), or water as preprocedural rinse. Aerosols produced during ultrasonic scaling were collected from the chest area (PC), dentist's mask, dentist's chest area (DC), bracket table, and assistant's area. Bacterial contamination was assessed using colony counting and adenosine triphosphate assays. With the eHVE 10 cm away from the mouth, bacterial contamination by aerosols was negligible. With the eHVE 20 cm away, more dental aerosols containing bacteria were detected at the DC and PC. Mouth rinsing decreased viable bacterial count by 31-38% (PI) and 22-33% (EO), compared with no rinsing. The eHVE prevents bacterial contamination when close to the patient's mouth. Preprocedural mouth rinsing can reduce bacterial contamination where the eHVE is positioned away from the mouth, depending on the procedure. Combining an eHVE with preprocedural mouth rinsing can reduce bacterial contamination in dental offices.


Assuntos
Anti-Infecciosos Locais , Antissépticos Bucais , Aerossóis , Microbiologia do Ar , Anti-Infecciosos Locais/uso terapêutico , Bactérias , Humanos , Antissépticos Bucais/uso terapêutico , Ultrassom
5.
Sci Rep ; 12(1): 7435, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523839

RESUMO

Silver diamine fluoride (SDF) has been long studied in laboratories, and its clinical effectiveness in the treatment and prevention of root caries has been reported. In the present study, we assessed the microbiological effects of SDF on dental biofilms grown on demineralized dentin in situ. Specifically, demineralized bovine root dentin slabs used as biofilm substrates were treated with 38% SDF, and the biofilms formed after this treatment were analyzed via real-time PCR, DEAD/LIVE cell staining, and SEM. Next, the viable cell count was determined, and microbial profiles were compared using 16S rRNA gene sequencing. Untreated slabs were used as controls. We observed significant decreases in viable cell counts (p < 0.05), number of biofilm-forming cells (p < 0.01), biofilm thickness (p < 0.01), and high proportion of dead cells with SDF treatment (p < 0.01). The microcolonies in the SDF-treated biofilms showed less complexity, and only a limited number of genera were differentially abundant between the groups. Microbial diversity index comparisons showed no significant differences between the groups with respect to treatments days (p = 0.362). Thus, SDF negatively influenced dental biofilm growth on demineralized root dentin in situ; however, its antimicrobial action did not target a specific oral taxon.


Assuntos
Cárie Dentária , Fluoretos Tópicos , Animais , Biofilmes , Bovinos , Dentina , Fluoretos Tópicos/farmacologia , Compostos de Amônio Quaternário/farmacologia , RNA Ribossômico 16S/genética , Compostos de Prata/farmacologia
6.
PLoS One ; 16(12): e0259850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882696

RESUMO

Dysbiosis of the oral microbiome is associated with diseases such as periodontitis and dental caries. Because the bacterial counts in saliva increase markedly during sleep, it is broadly accepted that the mouth should be cleaned before sleep to help prevent these diseases. However, this practice does not consider oral biofilms, including the dental biofilm. This study aimed to investigate sleep-related changes in the microbiome of oral biofilms by using 16S rRNA gene sequence analysis. Two experimental schedules-post-sleep and pre-sleep biofilm collection-were applied to 10 healthy subjects. Subjects had their teeth and oral mucosa professionally cleaned 7 days and 24 h before sample collection. Samples were collected from several locations in the oral cavity: the buccal mucosa, hard palate, tongue dorsum, gingival mucosa, tooth surface, and saliva. Prevotella and Corynebacterium had higher relative abundance on awakening than before sleep in all locations of the oral cavity, whereas fluctuations in Rothia levels differed depending on location. The microbiome in different locations in the oral cavity is affected by sleep, and changes in the microbiome composition depend on characteristics of the surfaces on which oral biofilms form.


Assuntos
Bactérias/classificação , Boca/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Sono , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Biofilmes/classificação , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Filogenia , Manejo de Espécimes
7.
Microorganisms ; 9(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835473

RESUMO

We performed a comprehensive microbiome analysis of root caries lesions using 22 teeth extracted from patients with severe periodontitis. The carious lesions were mechanically collected and cryo-pulverized following tooth extraction. Differences in the microbiome were compared between independent lesions at the supragingival site (SG) and lesions extending beyond the gingival margin (GCB). DNA was extracted and the microbiome was characterized on the basis of the V3-V4 hypervariable region of the 16S rRNA gene using paired-end sequencing on an Illumina MiSeq device. The microbiota in root caries lesions showed compositionally distinct microbiota depending on the location. The most abundant OTUs in the SG group were Streptococcus (26.0%), Actinomyces (10.6%), and Prevotella (7.6%). GCB presented Prevotella (11.1%) as the most abundant genus, followed by Fusobacterium (9.6%) and Actinomyces (8.7%). The SG group showed a lack of uniformity in microbiota compared with the GCB group. The bacterial profiles of GCB varied considerably among patients, including periodontal pathogens such as Porphyromonas, Selenomonas, Filifactor, Peptococcus, and Tannerella. Periodontal pathogens inhabit root caries lesions that extend beyond the gingival margin. This study provides a new perspective for elucidating the microbial etiology of root caries.

8.
Antibiotics (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439027

RESUMO

This study aimed to evaluate the anticariogenic biofilm activity of a novel zinc-containing glass ionomer cement, Caredyne Restore (CR), using a flow-cell system that reproduces Stephan responses. Streptococcus mutans biofilms were cultured on either CR or hydroxyapatite (HA) discs mounted on a modified Robbins device. The media were allowed to flow at a speed of 2 mL/min for 24 h while exposed to an acidic buffer twice for 30 min to mimic dietary uptake. Acid exposure enhanced biofilm inhibition in the CR group, which showed 2.6 log CFU/mm2 in viable cells and a 2 log copies/mL reduction in total cells compared to the untreated group after 24 h of incubation, suggesting enhanced anticariogenic activity due to the release of fluoride and zinc ions. However, there was no difference in the number of viable and total cells between the two experimental groups after 24 h of incubation in the absence of an acidic environment. The anticariogenic biofilm activity of CR occurs in acidic oral environments, for example in the transient pH drop following dietary uptake. CR restorations are recommended in patients at high risk of caries due to hyposalivation, difficulty brushing, and frequent sugar intake.

9.
Sci Rep ; 11(1): 138, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420225

RESUMO

Dental biofilm present on the tooth surface is associated with oral diseases, such as dental caries and periodontal disease. Because bacterial numbers rapidly increase in saliva during sleep, oral care before sleeping is recommended for the prevention of chronic oral diseases. However, temporal circadian changes in the quantity and quality of dental biofilms are poorly understood. This study aimed to investigate the impacts of sleeping on dental biofilm amounts and compositions by using an in situ model. The use of this in situ model enabled us to investigate dental biofilm formed in the oral cavity and to perform a quantitative analysis. Subjects began wearing oral splints in the morning or before sleeping, and biofilm samples were collected at 8, 16, and 24 h after the subjects began wearing oral splints; these samples were then used in various experiments. No significant changes in the numbers of biofilm-forming bacteria were caused by sleep. However, the relative abundances of genera related to periodontitis (i.e., Fusobacterium and Prevotella) increased after awakening. In conclusion, the numbers of biofilm-forming bacteria were not affected by sleep, and the abundances of obligate anaerobes increased after sleep. This research may aid in defining efficacious preventive oral care.


Assuntos
Biofilmes , Cárie Dentária/fisiopatologia , Doenças Periodontais/fisiopatologia , Sono , Adulto , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Cárie Dentária/microbiologia , Feminino , Humanos , Masculino , Boca/microbiologia , Doenças Periodontais/microbiologia
10.
Pharmacy (Basel) ; 9(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445627

RESUMO

Oral biofilms are associated with caries, periodontal diseases, and systemic diseases. Generally, antimicrobial therapy is used as the first line of treatment for infectious diseases; however, bacteria in biofilms eventually develop antibiotic resistance. This study aimed to apply our in situ biofilm model to verify whether an arginine preparation is useful for plaque control. Ten healthy subjects who did not show signs of caries, gingivitis, or periodontitis were recruited. The dental biofilms from the subjects were obtained using our oral device before and after gargling with arginine solution for 4 weeks. We found that 8% arginine solution significantly increased the concentration of ammonium ions (NH4 +) in vitro and in vivo in saliva (p < 0.05) and decreased the proportions of the genera Atopobium and Catonella in vivo. However, the viable count was unaffected by the mouthwash. Further, oral populations of the genera Streptococcus and Neisseria tended to increase with the use of arginine. Therefore, we concluded that using an 8% arginine solution decreased the NH4 + concentration in the oral cavity without affecting the number of viable bacteria, and that the diversity of oral bacterial flora changed. We suggest that arginine might help prevent mature biofilm formation.

11.
Biochem Biophys Res Commun ; 430(1): 320-4, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23159623

RESUMO

We previously characterized RNA polymerase II-associated protein 3 (RPAP3) as a cell death enhancer. Here we report the identification and characterization of splicing isoform of RPAP3, isoform 1 and 2. We investigated the interaction between RPAP3 and PIH1 domain containing protein 1 (PIH1D1), and found that RPAP3 isoform 1, but not isoform 2, interacted with PIH1D1. Furthermore, knockdown of RPAP3 isoform 1 by small interfering RNA down-regulated PIH1D1 protein level without affecting PIH1D1 mRNA. RPAP3 isoform 2 potentiated doxorubicin-induced cell death in human breast cancer T-47 cells although isoform 1 showed no effect. These results suggest that R2TP complex is composed of RPAP3 isoform 1 for its stabilization, and that RPAP3 isoform 2 may have a dominant negative effect on the survival potency of R2TP complex.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Doxorrubicina/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...