Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 12(15): 4191-7, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16526078

RESUMO

The 6Li,15N coupling constants of lithium amide dimers and their mixed complexes with n-butyllithium, formed from five different chiral amines derived from (S)-[15N]phenylalanine, were determined in diethyl ether (Et2O), tetrahydrofuran (THF) and toluene. Results of NMR spectroscopy studies of these complexes show a clear difference in 6Li,15N coupling constants between di-, tri- and tetracoordinated lithium atoms. The lithium amide dimers with a chelating ether group exhibit 6Li,15N coupling constants of approximately 3.8 and approximately 5.5 Hz for the tetracoordinated and tricoordinated lithium atoms, respectively. The lithium amide dimers with a chelating thioether group show distinctly larger 6Li,15N coupling constants of approximately 4.4 Hz for the tetracoordinated lithium atoms, and the tricoordinated lithium atoms have smaller 6Li,15N coupling constants, approximately 4.9 Hz, than their ether analogues. In diethyl ether and tetrahydrofuran, mixed dimeric complexes between the lithium amides and n-butyllithium are formed. The tetracoordinated lithium atoms of these complexes have 6Li,15N coupling constants of approximately 4.0 Hz, and the 6Li,15N coupling constants of the tricoordinated lithium atoms differ somewhat, depending on whether the chelating group is an ether or a thioether; approximately 5.1 and approximately 4.6 Hz, respectively. In toluene, mixed trimeric complexes are formed from two lithium amide moieties and one n-butyllithium. In these trimers, two lithium atoms are tricoordinated with 6Li,15N coupling constants of approximately 4.6 Hz and one lithium is dicoordinated with 6Li,15N coupling constants of approximately 6.5 Hz.

2.
Chemistry ; 11(16): 4785-92, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15929140

RESUMO

The mixed-metal complex formed from n-butylsodium, n-butyllithium, and a chiral amino ether has been studied by NMR spectroscopy. Three different mixed-metal amides were used as chiral bases for the deprotonation of cyclohexene oxide. The selectivity and initial rate of reaction were compared for sodium-amido ethers, lithium-amido ethers, and mixtures of sodium and lithiumamido ethers in diethyl ether and tetrahydrofuran, respectively. The mixed sodium/lithium amides are more reactive than the single sodium and lithium amides, whereas the stereoselectivities are higher when lithium amides are used. The alkali-metal/gamma-amido ethers exhibit both higher initial reaction rates and stereoselectivities than their beta-amido ether analogues. NMR spectroscopic studies of mixtures of n-butylsodium (nBuNa), n-butyllithium (nBuLi), and the gamma-amino ethers in diethyl ether show the exclusive formation of dimeric mixed-metal amides. In diethyl ether, the lithium atom of the mixed-metal amide is internally coordinated and the sodium atom is exposed to solvent; however, in tetrahydrofuran, both metals are internally coordinated.

3.
J Am Chem Soc ; 126(21): 6798-805, 2004 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15161308

RESUMO

NMR spectroscopic studies have been performed on the mixed complexes formed by the lithium salt of acetonitrile (LiCH(2)CN) and the chiral lithium amides Li-(S)-N-(2-methoxybenzyl)-1-amino-1-phenyl-2-ethoxyethane (Li-1) and Li-(S)-N-isopropyl-2-amino-1-phenyl-3-methoxypropane (Li-2) in diethyl ether and tetrahydrofuran solvent. In diethyl ether Li-1 and LiCH(2)CN form a mixed dimeric (1:1) complex, while Li-2 and LiCH(2)CN form a mixed trimeric (2:1) complex. The dimer undergoes fast exchange between ketenimine and bridged structures. Both (1)J((15)N,(6)Li) and (1)J((13)C,(6)Li) couplings were observed for the respectively isotopically labeled compounds. In the trimeric complex the CH(2)CN anion also undergoes fast degenerate exchange between ketenimine and bridged structures, and the complex appears C(2)-symmetric on the NMR spectroscopy time scale. Both the dimer and trimer complexes have the bridged acetonitrile anion in common, as indicated by the highly shielded alpha-carbon (13)C NMR shifts (delta -6.1 and -7.4, respectively). In tetrahydrofuran only N-metalated mixed LiCH(2)CN dimers were observed for both Li-1 and Li-2 with the less shielded (13)C NMR shifts of delta -2.5 and -2.2 for the alpha-carbon of LiCH(2)CN of the complexes.

4.
Chemistry ; 8(9): 2081-7, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11981893

RESUMO

Lithioacetonitrile and a chiral lithium amide with an internally coordinating methoxy group form mixed dimers in diethyl ether (DEE) and in tetrahydrofuran (THF) according to NMR studies. Based on the observed (6)Li,(1)H heteronuclear Overhauser effects, in THF lithioacetonitrile is present in a mixed complex with the chiral lithium amide, and this complex has a central N-Li-N-Li core. In DEE, on the other hand, the acetonitrile anion bridges two lithiums of the dimer to form a central six-membered Li-N-C-C-Li-N ring. Gauge individual atomic orbital DFT calculations of the (13)C NMR chemical shifts of the DEE- and THF-solvated mixed dimers show good agreement with those obtained experimentally. Lithioacetonitrile complexed to the chiral lithium amide has been employed in asymmetric addition to benzaldehyde in both DEE and THF. In THF the product, (S)-3-phenyl-3-hydroxy propionitrile, is formed in 55 % ee and in DEE the R enantiomer is formed in 45 % ee. This change in stereoselectivity between solutions in DEE and THF was found to be general among a number of different chiral lithium amides, all with an internal chelating methoxy group.


Assuntos
Acetonitrilas/química , Amidas/química , Benzaldeídos/química , Lítio/química , Antidepressivos/química , Éter/química , Furanos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...