Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300837

RESUMO

This paper focuses on the investigation of a multiphase flow of water, air, and abrasive particles inside and at the outlet of the abrasive head with the help of computational fluid dynamics calculations and measurements. A standard abrasive head with a water nozzle hole diameter of 0.33 mm (0.013") and an abrasive nozzle cylindrical hole diameter of 1.02 mm (0.04") were used for numerical modelling and practical testing. The computed tomography provided an exact 3D geometrical model of the cutting head that was used for the creation of the model. Velocity fields of abrasive particles at the outlet of the abrasive head were measured and analysed using particle tracking velocimetry and, consequently, compared with the calculated results. The calculation model took the distribution of the abrasive particle diameters with the help of the Rosin-Rammler function in intervals of diameters from 150 to 400 mm. In the present study, four levels of water pressure (105, 194, 302, 406 MPa) and four levels of abrasive mass flow rate (100, 200, 300, 400 kg/min) were combined. The values of water pressures and hydraulic powers measured at the abrasive head inlet were used as boundary conditions for numerical modelling. The hydraulic characteristics of the water jet were created from the measured and calculated data. The calculated pressure distribution in the cylindrical part of the abrasive nozzle was compared with studies by other authors. The details of the experiments and calculations are presented in this paper.

2.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019587

RESUMO

The manufacturing route primarily determines the properties of materials prepared by additive manufacturing methods. In this work, the microstructural features and mechanical properties of 316 L stainless steel prepared by the selective laser method have been determined. Three types of samples, (i) selective laser melted (SLM), (ii) selective laser melted and hot isostatic pressed (HIP) and (iii) selective laser melted and heat treated (HT), were characterized. Microstructural analysis revealed that SLM samples were formed by melt pool boundaries with fine cellular-dendritic-type microstructure. This type of microstructure disappeared after HT or HIP and material were formed by larger grains and sharply defined grain boundaries. The SLM-prepared samples contained different levels of porosity depending on the preparation conditions. The open interconnected LOF (lack of fusion) pores were observed in the samples, which were prepared with using of scanning speed 1200 mm/s. The blowhole and keyhole type of porosity were observed in the samples prepared by lower scanning speeds. The HIP caused a significant decrease in internal closed porosity to 0.1%, and a higher pressure of 190 MPa was more effective than the usually used pressure of 140 MPa, but for samples with open porosity, HIP was not effective. The relatively high yield strength of 570 MPa, tensile strength of 650 MPa and low ductility of 30-34% were determined for SLM samples with the lower porosity content than 1.3%. The samples after HIP showed lower yield strengths than after SLM (from 290 to 325 MPa) and relatively high ductility of 47.8-48.5%, regardless of the used SLM conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...