Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15693-15704, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38766756

RESUMO

Ab initio molecular dynamics simulations are used to investigate the fragmentation dynamics following the double ionization of 2-deoxy-D-ribose (DR), a major component in the DNA chain. Different ionization scenarios are considered to provide a complete picture. First focusing on isolated DR2+, fragmentation patterns are determined for the ground electronic state, adding randomly distributed excitation energy to the nuclei. These patterns differ for the two isomers studied. To compare thermal and electronic excitation effects, Ehrenfest dynamics are also performed, allowing to remove the two electrons from selected molecular orbitals. Two intermediate-energy orbitals, localized on the carbon chain, were selected. The dissociation pattern corresponds to the most frequent pattern obtained when adding thermal excitation. On the contrary, targeting the four deepest orbitals, localized on the oxygen atoms, leads to selective ultrafast C-O and/or O-H bond dissociation. To probe the role of environment, a system consisting of a DR molecule embedded in liquid water is then studied. The two electrons are removed from either the DR or the water molecules directly linked to the sugar through hydrogen bonds. Although the dynamics onset is similar to that of isolated DR when removing the same deep orbitals localized on the sugar oxygen atoms, the subsequent fragmentation patterns differ. Sugar damage also occurs following the Coulomb explosion of neighboring H2O2+ molecules due to interaction with the emitted O or H atoms.

2.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35029679

RESUMO

To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.


Assuntos
Embrião não Mamífero/citologia , Imageamento Tridimensional/métodos , Resistência ao Cisalhamento , Animais , Agregação Celular , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...