Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(2): e3932, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448209

RESUMO

There is growing evidence that the Earth's climate is undergoing profound changes that are affecting biodiversity worldwide. This gives rise to the pressing need to develop robust predictions on how species will respond in order to inform conservation strategies and allow managers to adapt mitigation measures accordingly. While predictions have begun to emerge on how species at the extremes of the so-called slow-fast continuum might respond to climate change, empirical studies for species for which all demographic traits contribute relatively equally to population dynamics are lacking. Yet, climate change is expected to strongly affect them throughout their entire lifecycle. We built a 21-year integrated population model to characterize the population dynamics of the rock partridge (Alectoris graeca) in France, and tested the influence of nine weather covariates on demographic parameters. As predicted, both annual survival and breeding success were affected by weather covariates. Thick snow cover during winter was associated with low survival and small brood size the following breeding season. Brood size was higher with intermediate winter temperatures and snowmelt timing, positively correlated to breeding period temperature, but negatively correlated to temperature during the coldest fortnight and precipitation during the breeding period. Survival was positively correlated to winter temperature, but negatively to breeding period precipitation. Large-scale indices indicated that cold and wet winters were associated with small brood size the following breeding season but with high survival. Expected changes of weather conditions due to climate change are likely to impact demographic traits of the rock partridge both positively and negatively depending on the traits and on the affected weather variables. Future population dynamics will thus depend on the magnitude of these different impacts. Our study illustrates the difficulty to make strong predictions about how species with a population dynamic influenced by both survival and fecundity will respond to climate change.


Assuntos
Aves , Tempo (Meteorologia) , Animais , Estações do Ano , Temperatura , Dinâmica Populacional , Fertilidade , Mudança Climática
2.
Ecol Evol ; 12(4): e8835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475190

RESUMO

Assessing trends in the relative abundance of populations is a key yet complex issue for management and conservation. This is a major aim of many large-scale censusing schemes such as the International Waterbird Count (IWC). However, owing to the lack of sampling strategy and standardization, such schemes likely suffer from biases due to spatial heterogeneity in sampling effort. Despite huge improvements of the statistical tools that allow tackling these statistical issues (e.g., GLMM, Bayesian inference), many conservationists still prefer to rely on stand-alone turn-key statistical tools, often violating the prerequisites put forward by the developers of these tools. Here, we propose a straightforward and flexible approach to tackle the typical statistical issues one can encounter when analyzing count data of monitoring schemes such as the IWC. We rely on IWC counts of the declining common pochard populations of the Northwest European flyway as a case study (period 2002-2012). To standardize the size of sampling units and mitigate spatial autocorrelation, we grouped sampling sites using a 75 × 75 km grid cells overlaid over the flyway of interest. Then, we used a hierarchical modeling approach, assessing population trends with random effects at two spatial scales (grid cells, and sites within grid cells) in order to derive spatialized values and to compute the average population trend at the whole flyway scale. Our approach allowed to tackle many statistical issues inherent to this type of analysis but often neglected, including spatial autocorrelation. Concerning the case study, our main findings are that: (1) the northwestern population of common pochards experienced a steep decline (4.9% per year over the 2002-2012 period); (2) the decline was more pronounced at high than low latitude (11.6% and 0.5% per year at 60° and 46° of latitude, respectively); and, (3) the decline was independent of the initial number of individuals in a given site (random across sites). Beyond the case study of the common pochard, our study provides a conceptual statistical framework for estimating and assessing potential drivers of population trends at various spatial scales.

3.
PLoS One ; 11(9): e0163850, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27685660

RESUMO

Understanding effects of harvest on population dynamics is of major interest, especially for declining species. European lapwing Vanellus vanellus populations increased from the 1960s until the 1980s and declined strongly thereafter. About 400,000 lapwings are harvested annually and it is thus of high conservation relevance to assess whether hunting was a main cause for the observed changes in lapwing population trends. We developed a multi-event cause-specific mortality model which we applied to a long-term ring-recovery data set (1960-2010) of > 360,000 records to estimate survival and cause-specific mortalities. We found no temporal change in survival over the last 50 years for first-year (FY) and older birds (after first-year; AFY) originating from different ringing areas. Mean survival was high, around 0.60 and 0.80 for FY and AFY individuals, respectively. The proportion of total mortality due to hunting was <0.10 over the study period and the estimated proportion of harvested individuals (kill rate) was <0.05 in each year. Our result of constant survival indicates that demographic processes other than survival were responsible for the pronounced change in lapwing population trends in the 1980s. Our findings lend support to the hypothesis that hunting was not a significant contributor to the large-scale decline of lapwing populations. To halt the ongoing decline of European lapwing populations management should focus on life history stages other than survival (e.g. productivity). Further analyses are required to investigate the contribution of other demographic rates to the decline of lapwings and to identify the most efficient conservation actions.

4.
Oecologia ; 173(1): 151-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23456200

RESUMO

Studies of population dynamics of long-lived species have generally focused on adult survival because population growth should be most sensitive to this parameter. However, actual variations in population size can often be driven by other demographic parameters, such as juvenile survival, when they show high temporal variability. We used capture-recapture data from a long-term study of a hunted, migratory species, the greater snow goose (Chen caerulescens atlantica), to assess temporal variability in first-year survival and the relative importance of natural and hunting mortality. We also conducted a parasite-removal experiment to determine the effect of internal parasites and body condition on temporal variation in juvenile survival. We found that juvenile survival showed a higher temporal variability than adult survival and that natural mortality was more important than hunting mortality, unlike in adults. Parasite removal increased first-year survival and reduced its annual variability in females only. Body condition at fledging was also positively correlated with first-year survival in treated females. With reduced parasite load, females, which are thought to invest more in their immune system than males according to Bateman's principle, could probably reallocate more energy to growth than males, leading to a higher survival. Treated birds also had a higher survival than control ones during their second year, suggesting a developmental effect that manifested later in life. Our study shows that natural factors such as internal parasites may be a major source of variation in juvenile survival of a long-lived, migratory bird, which has implications for its population dynamics.


Assuntos
Constituição Corporal , Gansos/parasitologia , Migração Animal , Animais , Anti-Helmínticos/uso terapêutico , Meio Ambiente , Feminino , Gansos/anatomia & histologia , Gansos/fisiologia , Masculino , Doenças Parasitárias em Animais/tratamento farmacológico , Dinâmica Populacional , Praziquantel/uso terapêutico , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...