Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(2): 666-676, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33051974

RESUMO

BACKGROUND: Tetranychus urticae is a notorious crop pest with a worldwide distribution that has developed resistance to a wide range of acaricides. Here, we investigated the resistance levels of a T. urticae population collected from an ornamental greenhouse in Peloponnese, Greece, and analyzed its resistance mechanisms at the molecular level. RESULTS: Toxicological assays showed resistance against compounds with different modes of action, with resistance ratios of: 89-fold for abamectin; > 1000-fold for clofentezine; > 5000-fold for etoxazole; 27-fold for fenpyroximate and pyridaben; 20- and 36-fold for spirodiclofen and spirotetramat, respectively; and 116- and > 500-fold for cyenopyrafen and cyflumetofen, respectively. Bioassays with synergists indicated the involvement of detoxification enzymes in resistance to abamectin, but not to cyflumetofen and spirodiclofen. RNA sequencing (RNA-seq) analysis showed significant over-expression of several genes encoding detoxification enzymes such as cytochrome P450 monooxygenases and UDP-glycosyltransferases, which have been previously associated with acaricide resistance. Known target-site resistance mutations were identified in acetyl-choline esterase, chitin synthase 1 and NDUFS7/psst, but putative novel resistance mutations were also discovered in targets such as glutamate-gated chloride channel subunit 3. Interestingly, target-site resistance mutations against pyrethroids or bifenazate were not identified, possibly indicating a recent reduced selection pressure in Greece, as well as a possible opportunity to rotate these chemistries. CONCLUSION: We identified and characterized a striking case of multiple acaricide resistance in a field population of T. urticae. Exceptionally strong resistance phenotypes, with accumulation of multiple resistance mutations and over-expression of P450s and other detoxification genes in the same field population are reported.


Assuntos
Acaricidas , Piretrinas , Tetranychidae , Acaricidas/farmacologia , Animais , Grécia , Resistência a Inseticidas/genética , Tetranychidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...