Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 339: 111932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030037

RESUMO

Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.


Assuntos
Mostardeira , Plântula , Mostardeira/metabolismo , Plântula/metabolismo , Óxido Nítrico , Glicosídeo Hidrolases/metabolismo , Sementes/metabolismo , Glucosinolatos/metabolismo
2.
Physiol Mol Biol Plants ; 29(12): 2051-2065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222283

RESUMO

Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01371-z.

4.
Plant Physiol Biochem ; 161: 234-247, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647583

RESUMO

Plant cuticle, the site of perception of stress signals, is an extracellular hydrophobic barrier that covers the epidermis of the above-ground parts. This lipidic layer has been explored for its cutin and wax composition. However, reports on the cuticle proteins are scanty. Therefore, leaf cuticle proteins of Brassica juncea isolated using organic solvents (chloroform-methanol, 2:1(v/v)) were analyzed using gel based and quantitative shotgun proteomics. Out of 615 proteins identified, 27% (169) had signal peptides supporting extracellular localization. Bioinformatics tool, QuickGO predicted the involvement of these proteins in catabolism (21%), peptidase activity (13%), oxidoreductase (12%), defense response (9%), fatty acid binding (9%), nutrient reservoir activity (8%), chitin binding (7%) and lipid transport (2%). Myrosinase-catalyzed glucosinolate hydrolysis releases bioactive compounds, which contribute to plant defense. This system is termed as "mustard oil bomb". Myrosinase and its associating protein, GDSL esterase/lipase ESM1 (involved in cuticle structuring and defense) were detected in the cuticle. GDSL-esterase/lipase ESM1 and ß-glucanase (an antifreeze protein) showed in vitro activity. Analysis of cuticle extract by nanoliter osmometer-phase contrast microscopy detected antifreeze activity due to non-protein component. Post-translational modification analysis using PTM viewer predicted N-glycosylation (66%), N-terminal proteolysis (40%), and phosphorylation (32%) to be the dominant modification in the classical secretory proteins. N-glycosylation of myrosinase and GDSL esterase/lipase, ESM1 was confirmed by Con A affinoblotting. This study not only identified leaf cuticle proteins, but also laid the foundation for exploring the extracellular glucosinolate-myrosinase system, PTM crosstalk, and antifreeze activity as stress adaptive strategies in B. juncea.


Assuntos
Mostardeira , Proteoma , Glicosídeo Hidrolases , Folhas de Planta
5.
Physiol Mol Biol Plants ; 22(4): 473-484, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27924120

RESUMO

Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI-TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.

6.
Proteomics ; 14(13-14): 1581-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25044573

RESUMO

International Plant Proteomics Organization (INPPO) outlined ten initiatives to promote plant proteomics in each and every country. With greater emphasis in developing countries, one of those was to "organize workshops at national and international levels to train manpower and exchange information". This third INPPO highlights covers the workshop organized for the very first time in a developing country, India, at the Department of Botany in University of Delhi on December 26-30, 2013 titled - "1(st) Plant Proteomics Workshop / Training Program" under the umbrella of INPPO India-Nepal chapter. Selected 20 participants received on-hand training mainly on gel-based proteomics approach along with manual booklet and parallel lectures on this and associated topics. In house, as well as invited experts drawn from other Universities and Institutes (national and international), delivered talks on different aspects of gel-based and gel-free proteomics. Importance of gel-free proteomics approach, translational proteomics, and INPPO roles were presented and interactively discussed by a group of three invited speakers Drs. Ganesh Kumar Agrawal (Nepal), Randeep Rakwal (Japan), and Antonio Masi (Italy). Given the output of this systematic workshop, it was proposed and thereafter decided to be organized every alternate year; the next workshop will be held in 2015. Furthermore, possibilities on providing advanced training to those students / researchers / teachers with basic knowledge in proteomics theory and experiments at national and international levels were discussed. INPPO is committed to generating next-generation trained manpower in proteomics, and it would only happen by the firm determination of scientists to come forward and do it.


Assuntos
Proteínas de Plantas/análise , Plantas/química , Proteômica/educação , Proteômica/métodos , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Índia , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...